
www.manaraa.com

Coding Techniques for Data-Storage Systems

Thesis by

Yuval Cassuto

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended December 3, 2007)

www.manaraa.com

ii

c© 2008

Yuval Cassuto

All Rights Reserved

www.manaraa.com

iii

This thesis is dedicated to my father, Moshe, who did not enjoy the longevity to read it,

but whose tacit drive toward high education has been the key to its completion.

www.manaraa.com

iv

Acknowledgements

Acknowledging all of Jehoshua (Shuki) Bruck’s contributions to this thesis is a plea-

sure but simultaneously a challenge. His fingerprints are vividly present on all aspects of

research chronicled in this thesis – problem selection, motivations, solutions and presenta-

tion. Yet Shuki’s contributions to my professional advancement transcend far beyond what

found in this bulky text – a guide to creative innovation in a human-friendly environment

being the most notable of all.

Through enlightening teachings and numerous discussions,Robert J. McEliece has in-

troduced me to, and guided me in, the exciting field of error-control codes – maybe the

shortest bridge to connect deep Mathematics with useful engineering.

Enjoyable conversations with Mario Blaum all stirred strong impact on my research

directions. It took some time to believe that this friendly and funny persona is the one

behind most major advancements in the area of array codes.

Lihao Xu, a leading expert in data-storage codes, contributed his encyclopedic knowl-

edge and sharp observations to help in focusing this research and aligning it with the

broader data-storage community.

Tracey Ho, despite being preoccupied in a journey to sustained stardom, has always

volunteered her breadth and depth in the Information Sciences to offer insights pertaining

to this work.

Last but not least in this fine list, is Michelle Effros whose wide shoulders in Infor-

mation Theory have helped me see farther and better, to contribute to the area of Network

Coding – an inspiring field with obvious and less obvious links to the material of this thesis.

www.manaraa.com

v

In addition to the gratitude that goes to my Thesis Committee, I feel indebted to many

other individuals for their positive impact on my Caltech experience. Mates in the Paradise

Laboratory have filled my work days with enjoyable conversations, educated advice and

occasional laughs. Friends and academic soul-mates in the first floor’s Communications,

Data-Compression, and Signal-Processing Laboratories, with whom I shared research in-

terests, ideas and opinions. Many friends from across Caltech, all happen to be excellent

scientists, for the great after-school activities seasoned with cross-disciplinary scientific

discussions.

Speaking of friendship, wisdom and amusement, my true friend Miki Lustig has shown

that, similarly to degrees on a circle, 360 miles can be a veryshort distance away.

A reliable, remotely operated support system throughout mystudies has been my loving

family in Israel, as well as my good old friends. My mother Sara, my sister Merav, my

brother Yair, my parents-in-law Zvi and Rachel and siblings-in-law Nili and Danny – I

hope that reading this thesis will provide good answers to the question “What is he doing

there all that time?”

Finally, the ultimate words of recognition go to my sweet andjoyful wife Ruth. With

just me and four mid-size suitcases, she happily joined thisacademic adventure and had

made it the success that it has been. On days when this thesis rocketed forward, and on

days when it was buried in trenches, the unconditional love from her and from our two

marvels Asaf and Gili, has been the fuel that kept this research going.

www.manaraa.com

vi

Contents

Acknowledgements iv

Abstract xiv

1 Introduction 1

1.1 Coding for Data-Storage Systems .. . 2

1.2 Storage-System Challenges .. . 4

1.3 Summary of Contributions .5

1.3.1 Contribution Hierarchy . 5

1.3.2 Asymmetric Limited-Magnitude Error-Correcting Codes for Multi-

Level Flash Memories . 6

1.3.3 Codes for Random and Clustered Device Failures 8

1.3.4 Cyclic Lowest-Density MDS Array Codes 9

1.3.5 Decoding Beyond Half the Minimum Distance 11

1.4 The Audience of the Thesis .12

I Error Models and Code Constructions 14

2 Asymmetric Limited-Magnitude Error-Correcting Codes fo r Multi-Level Flash

Memories 15

2.1 Introduction . 16

2.2 t Asymmetricℓ-Limited-Magnitude Error-Correcting Codes 20

2.3 Construction oft Asymmetricℓ-Limited-Magnitude Error-Correcting Codes 22

2.3.1 Discussion and analysis of the code constructions 24

www.manaraa.com

vii

2.3.2 Decoding . 25

2.3.3 Encoding . 27

2.4 Optimality of the Code Construction and Comparison to Related Codes . . 29

2.4.1 Perfect Codes . 29

2.4.2 Asymptotic optimality of Construction 2.1 31

2.4.3 Comparison to Varshamov codes 36

2.4.3.1 Comparison forℓ = 1 36

2.4.3.2 Comparison for a generalℓ 37

2.5 Systematic Asymmetric Limited-Magnitude Error-Correcting Codes 37

2.5.1 Systematic codes forℓ = 1 limited-magnitude errors 37

2.5.2 Systematic codes forℓ > 1 limited-magnitude errors 39

2.6 Codes for Asymmetric and Symmetric Limited-Magnitude Errors 43

2.7 Asymmetric Limited-Magnitude Error-Correcting Codesin Flash Devices . 47

2.7.1 Implementation architecture .. 47

2.7.2 Programming speed-up . 48

2.8 Conclusions and Future Research 56

3 Codes for Random and Clustered Device Failures 58

3.1 Introduction . 59

3.2 Definitions and Notations .. 62

3.2.1 Array Codes . 62

3.2.2 Random/Clustered erasure correction 63

3.3 Preliminaries and Relevant Known Results 65

3.3.1 Codes for erasures in a single cluster 65

3.3.2 Codes for Random erasures . 66

3.3.2.1 EVENODD for correcting 2 Random disk erasures 66

3.3.2.2 Algebraic description of EVENODD 67

3.3.2.3 EVENODD for correcting 3 and more Random disk era-

sures . 68

3.3.3 The RingRp . 69

www.manaraa.com

viii

3.4 Definition of the RC Codes . 70

3.4.1 Geometric Description . 70

3.4.2 Algebraic Description . 72

3.5 Erasure Correctability of RC Codes 73

3.5.1 Clustered erasure correctability 73

3.5.2 Random erasure correctability 80

3.6 Efficient Decoding of Erasures .. . 81

3.6.1 Description of 4-erasure decoding algorithm 82

3.6.2 Analysis of 4-erasure decoding algorithm 84

3.7 Reliability Analysis of RC-code Protected Disk Arrays 85

3.7.1 MTTDL calculation for MDS codes under Random failures 86

3.7.2 MTTDL calculation for RC codes under Random and Clustered

failures . 88

3.8 Code Evaluation and Comparison with Existing Schemes 91

3.9 Discussion . 92

4 Cyclic Lowest-Density MDS Array Codes 94

4.1 Introduction . 95

4.2 Definitions . 97

4.3 Cyclic Array Codes . 99

4.4 κ1◦,κ2◦: Cyclic Lowest-Density MDS codes with

n = p− 1, b = p−1
r . 102

4.4.1 Example:κ1◦(7) revisited – the transformation fromκ1(7) 106

4.5 κ3◦: Quasi-Cyclic Lowest-Density MDS Codes with

n = 2(p− 1), b = p− 1, r = 2 . 107

4.5.1 Construction of theκ3◦ codes . 108

4.5.1.1 a Columns . 109

4.5.1.2 b Columns . 110

4.5.2 Proof of the MDS property . 111

4.6 Implementation Benefits of Cyclic and Quasi-Cyclic Array Codes 118

www.manaraa.com

ix

4.6.1 Encoding and Updates . 120

4.6.2 Syndrome Calculation . 120

4.6.3 Erasure and Error Decoding . 121

4.7 Conclusion . 121

II Decoding Techniques 122

5 Decoding Beyond Half the Minimum Distance 123

5.1 Introduction . 123

5.2 Review of Guruswami-Sudan Algebraic List Decoding 126

5.3 Interpolation Polynomials for Low-Weight Errors 128

5.3.1 Hasse derivatives . 128

5.3.2 Closed form upper bound on interpolation cost 129

5.3.3 The no errors case . 131

5.3.4 Tighter bounds for higher weight errors 132

5.3.5 Interpolation costs for a sample RS code 134

5.4 From Interpolation Cost to Decoding Complexity 134

5.4.1 Gaussian elimination interpolation 135

5.4.2 The standard interpolation algorithm 136

5.5 Interpolation Cost in Soft-Decision Decoders 139

5.5.1 Simulation results for soft-decision decoding 141

5.6 Miscorrection Probability of List Decoders 142

5.7 A Combinatorial Bound on the Decoder’s Output-List Size. 146

5.7.1 Derivation of the bound . 148

5.7.2 Comparison with known combinatorial bounds 151

5.7.3 Comparison with algebraic bound for Reed-Solomon codes 153

5.8 Notes and Open Questions . 156

6 Forward-Looking Summary 157

Bibliography 160

www.manaraa.com

x

List of Figures

1.1 Coding Theory and Practice. 2

1.2 Three Layers of Novelty . 5

1.3 Common Errors in Flash Storage. 6

1.4 Example of correcting asymmetric limited-magnitude errors 7

1.5 Classification of patterns by the number of clusters. 9

1.6 Sample systematically-cyclic lowest-density MDS array code 10

1.7 Decoding time as a function of the Hamming weight of the errorvector. 12

2.1 Example of correcting asymmetric limited-magnitude errors 17

2.2 Asymmetric Channels and Error Models. 18

2.3 Decoding asymmetric limited-magnitude error-correctingcodes 27

2.4 Encoding Procedure forCH . 28

2.5 Asymmetric limited-magnitude error correcting codes as tilings 31

2.6 Idea of rate-optimality proof . 33

2.7 Encoding procedure for a systematic code withℓ = 1 39

2.8 Encoding of a systematic sample code witht = 1 andℓ = 3 43

2.9 Concatenated-Coding view of Construction 2.2. 44

2.10 Example of a code for asymmetric and symmetric limited-magnitude errors. 45

2.11 Example of decoding asymmetric and symmetric limited-magnitude errors 46

2.12 Flash architecture with symmetric error-correcting codes. 48

2.13 Proposed Flash architecture with asymmetric limited-magnitude error-correcting codes49

2.14 Performance of a Flash adaptive program sequence [BSH05]. 50

2.15 Choice of a programming distribution based on the specified probability of over-

programming. 51

www.manaraa.com

xi

2.16 A pictorial illustration of the modeled programming sequence 52

2.17 Percentage of program-time savings as a function of the code’s magnitude limit

parameterℓ . 55

3.1 Clustered and Non-clustered patterns of4 device failures. 59

3.2 Classification of column combinations by their respective numbers of clusters.. . . 64

3.3 Encoding of the EVENODD code. 67

3.4 The RC-code array. 70

3.5 Encoding of the RC code. 72

3.6 State diagram description of all-4-erasure correcting arrays under Random failures. 86

3.7 State diagram description of RC-coded arrays under Random failures. 88

3.8 MTTDL curves under Random failures for RC codes, all-3-erasure and all-4-erasure

correcting codes . 89

3.9 State diagram description of RC-coded arrays under Random and Clustered failures 90

3.10 MTTDL curves under Random and Clustered failures for RC codes and all-4-

erasure correcting code. 91

4.1 G,H and the index arrayAC for a samplen = 6, b = 3,Np = 6 codeC 99

4.2 Set-subgraph unions of the codeC . 113

4.3 Set-subgraph of columnsal,al+v . 114

4.4 Set-subgraph of columnsbl,bl+v . 115

4.5 A cycle from columnsal,bℓ . 116

4.6 A path from columnsal,bℓ . 117

4.7 A full description of a sample3× 6 array code 119

4.8 A compact description of a sample3× 6 cyclic array code. 119

5.1 Block diagram of the Guruswami-Sudan list-decoding algorithm 127

5.2 Standard interpolation algorithm (sketch). 137

5.3 Interpolation algorithm with improved average running time 138

5.4 Channel model for soft-decision decoding. 139

5.5 SD-HD comparison, average interpolation cost. 140

www.manaraa.com

xii

5.6 Interpolation cost of SD decoder, MAX, MIN and AVERAGE. 141

5.7 Possible decoding outcomes. 143

5.8 Decodability graph under unique decoding. 144

5.9 Decodability graph under list decoding. 145

5.10 Bounds on miscorrection for a [31,15] MDS code, decoded to radius 9 146

www.manaraa.com

xiii

List of Tables

1.1 The theory of correcting asymmetric limited-magnitudeerrors 7

2.1 Approximate average savings in programming pulses for sample values ofℓ . 54

3.1 Comparison of RC Codes and EVENODD Codes 92

4.1 Summary of cyclic code constructions 96

5.1 Interpolation costs for the[31, 15] RS code withm = 3 135

5.2 Bound comparison for sample decoders 152

www.manaraa.com

xiv

Abstract

As information-bearing objects, data-storage systems arenatural consumers of information-

theoretic ideas. For many issues in data-storage systems, the best trade-off between cost,

performance and reliability, passes through the application of error-correcting codes. Error-

correcting codes that are specialized for data-storage systems is the subject studied by this

thesis. On the practical side, central challenges of storage systems are addressed, both

at the individual-device level and higher at the enterpriselevel for disk arrays. The re-

sults for individual devices include a new coding paradigm for Multi-Level Flash storage

that benefits storage density and access speed, and also a higher-throughput algorithm for

decoding Reed-Solomon codes with large decoding radii. Theresults for storage arrays ad-

dress models and constructions to combat correlated devicefailures, and also introduce new

highly-regular array-code constructions with optimal redundancy and updates. On the the-

oretical side, the research stretches across multiple layers of coding theory innovation: new

codes for new error models, new codes for existing error models, and new decoding tech-

niques for known codes. To bridge the properties and constraints of practical systems with

the mathematical language of coding theory, new well-motivated models and abstractions

are proposed. Among them are the models oft asymmetricℓ-limited-magnitude errors

andClustered erasures. Later, after maximizing the theory’s power in addressing the ab-

stractions, the performance of storage systems that employthe new schemes is analytically

validated.

www.manaraa.com

1

Chapter 1

Introduction

Error-correcting codes are a cardinal component of any modern information-bearing sys-

tem. In highly optimized systems, it is either impossible orinefficient to guarantee perfectly

reliable information throughout the system, and thus error-correcting codes are employed

to protect the user’s data from the aggregate system imperfection. It may be fair to say that

among all system components, the error-correcting code is the least accessible and least

understood one by engineering professionals outside this specific expertise. This fact can

be attributed to the inherent exponential blowout of the code space, that renders impractical

any bottom-up design technique that may be very effective for other system blocks. Simu-

lations are partially effective in predicting some of the behaviors of the coding sub-system,

but they largely fail in providing sufficient insight that would assist the synthesis of good

codes. That often leads to shifting the design efforts away from the error-correcting code,

and resorting to codes that had proved successful in other systems – overlooking the special

characteristics of the particular system that may allow theincorporation of more efficient

codes. Contributing to that phenomenon is the exceptional success that Coding Theory has

already achieved: finding good codes that efficiently approach various theoretical limits.

Yet those victories of Coding Theory in combating a few channel models should not

raise the misconception that all the good codes have alreadybeen found. As important as

those channels may be, they represent only the tip of the general theory of information.

Claude E. Shannon, in his founding article of Information Theory, formulated his ideas in

rigorous mathematical terms, but also included a general recipe to obtain reliable informa-

tion, put in layman’s words [Sha48, Section 14]:

www.manaraa.com

2

”The redundancy must be introduced in the proper way to combat the particu-

lar noise structure involved.”

Hence a core foundation in theory, as well as a promising strategy in practice, is to under-

stand the system’s underlying unreliability sources, bothnatural and man(engineer)-made,

and use that knowledge in the construction of better codes.

While the idea of tailoring the solution to the specificitiesof the problem may sound

trivial, in the context of Coding Theory it enfolds a primarychallenge. In order to provide

precise error-control characterizations of combinatorial structures, there is a need to intro-

duce newabstractions, that on one hand represent the system realities, and on the other

hand are amenable to analysis and design. Thus an essential step between understanding

the problem and finding a solution, is the search for useful abstractions that will constitute

the bridge from practice to theory. Later, after maximizingthe theory’s power in address-

ing the abstractions, performancevalidationwill constitute the return bridge from theory

to practice (See Figure 1.1). Each chapter of this thesis embarks on such a round trip from

practice to theory and then back – leveraging new theoretical methods to the improvement

of storage-system performance.

TheoryPractice

abstraction

validation

Figure 1.1:Coding Theory and Practice

1.1 Coding for Data-Storage Systems

“Pundits have proclaimed it for years; articles in the popular press have

plumbed its implications for every imaginable enterprise;businesses are en-

amored with it; on-line and print magazines are devoted to it; government is

www.manaraa.com

3

wrestling with it, movies have been made about it; people aretalking about

it–can there be any doubt?” –James A. Dewar

There is no doubt that mankind has entered the “Information Age”. In any area of life,

we are immersed in information. The most obvious product of information is... more

information, hence orders of magnitudes growth in its quantities are exhibited in short time

scales. For the data-storage industry, a consistent, steepincrease in demand introduces

technological challenges, since leaps in storage densities require changes that considerably

alter the design framework and implementation constraints. Truths, wisdoms and arts that

were highly effective yesterday, may be secondary or obsolete today. Unfortunately, market

pressures often do not allow an orderly rethinking process for the new challenges at hand,

and instead crude adaptations of previous schemes are pursued.

Storage systems in general, have some common properties that affect the implementa-

tion of error-correcting codes within them. Such properties, those that are the most relevant

to the results of subsequent chapters, are listed below.

• High access speeds.Storage devices provide information transfer rates in the order

of 100-MB/sec (Mega-Byte per second). Such high access speeds enforce stringent

constraints on the complexity of the coding modules, and disallow coding schemes

that are viable options in systems with significantly lower transfer rates.

• Dynamic updates. Information stored in dynamic-storage systems changes fre-

quently in unpredictable patterns. Therefore, re-encoding the information after each

small update is inefficient, and codes are required to minimize the number of parity

updates needed per small information update.

• Flexibility. In storage devices the encoder and decoder are implemented in the same

physical module, obviating issues of standardization and interoperability that hinder

coding novelty in communication applications.

• Controlled error sources. Error-correcting codes can be used in storage systems to

combat errors that are intentionally introduced in a controlled way. The introduction

of controlled errors, and correction thereof, allow more flexibility in the performance

www.manaraa.com

4

requirements from other system blocks. The error-correcting code thus allows system

components to dynamically trade-off different performance parameters.

• Media variety. There are numerous types of storage media and architectures, each

with dissimilar properties and challenges. Emerging storage technologies, with their

unique imperfections, keep storage error-correcting codes a vibrant and diverse re-

search area.

This list suggests that common abstractions addressed by Coding Theory (e.g. minimum

distance, code rate, decoding complexity), are insufficient to capture the diverse properties

and constraints of storage systems, and warrants the introduction and study of useful new

ones.

1.2 Storage-System Challenges

Delivering cost-effective reliable data storage to users is a paramount mission that involves

a variety of efforts. As in other competitive technologicalmarkets, the numerous engineer-

ing challenges of large-scale storage systems are divided and encapsulated in standardized

layers, allowing vendors to offer highly specialized solutions for small parts of the general

problem. At the device level, the main challenge is to tame a chosen physical media (e.g.

Magnetic, Semiconductor, Micro-mechanical) into a dense and reliable storage unit. At the

enterprise level, multiple devices of different kinds and characteristics are combined into a

storage array that protects the data from failures of individual units. Error-correcting codes

are a major ingredient in driving performance and reliability of both storage devices and

storage arrays. Higher layers of storage systems handle a variety of non-trivial services

such as virtualization, backups and security. The results of this thesis address immediate

concerns of storage systems, both at the device level (codesfor Multi-level Flash memo-

ries, improved decoding of Reed-Solomon codes) and at the enterprise level (efficient array

codes for Clustered failures, highly regular array codes with optimal redundancy and up-

dates). Therefore, it is hoped and believed that the fast-evolving and innovation-demanding

data-storage technology will benefit from the proposed methods and ideas.

www.manaraa.com

5

1.3 Summary of Contributions

1.3.1 Contribution Hierarchy

From a coding-theoretic perspective, three layers of novelty comprise the results of this

thesis. Clearly no layer is generally more important than others to the advancement of

storage error-correcting codes, but this classification helps in ordering the chapters of the

thesis to follow some hierarchy. As depicted in Figure 1.2, the top layer, codes for new

Codes for new error models

New codes for existing error models

Improved decoding for known codes

Chapters 2, 3

Chapter 4

Chapter 5

Figure 1.2:Three Layers of Novelty

error models, consists of Chapters 2 and 3. The middle layer,new codes for existing error

models, includes the new MDS codes of Chapter 4. The bottom layer, improved decoding

for known codes, is the subject of Chapter 5.

What follows next is a summary of the subjects studied in thisthesis. For each subject

we note the main observations that triggered its investigation, and summarize the impact

on this subject by differentiating our research contributions from previously known results.

www.manaraa.com

6

1.3.2 Asymmetric Limited-Magnitude Error-Correcting Cod es for Multi-

Level Flash Memories

In Multi-Level Flash Memories, the cell’s range of threshold levels is discretized toq lev-

els. Programming a cell to one particular level thus represents log q bits of information.

Representing multiple bits in a single cell improves the storage density, with an obvious

toll on error margins whose shrinking affects device reliability and access speeds. The

inherent separation between cell programming and cell erasing in the operation of Flash

devices makes the dominant error sourcesasymmetric– changing the threshold level in

one known direction. Moreover, properties of the physical mechanisms utilized for pro-

gramming cause errors of low magnitudes to be much more likely than higher magnitude

ones. These observations on Multi-Level Flash characteristics are illustrated (forq = 8) in

Figure 1.3. Level number 1 (circled) is stored by a Flash cell, and is predominantly prone

to small errors in the rightward direction. This unique behavior of Flash errors motivates

0 1 2 3 4 5 6 7

Asymmetric

Low magnitude

Figure 1.3:Common Errors in Flash Storage

the study ofq-ary codes that correctt errors that are bothasymmetricand havelimited

magnitudes.

The following example illustrates the correction of asymmetric limited-magnitude er-

rors as a special case of the methods of Chapter 2. Suppose we have a group of5 symbols,

each taken from the alphabet{0, 1, . . . , 7}. To correctt = 2 errors of magnitudeℓ = 1 in

the upward direction, the code is defined as follows. As illustrated by the sample words in

Figure 1.4 below, if the codewords are restricted to have either all symbols with odd parity

or all symbols with even parity, then the required protection is achieved. For each of the

two sample codewords in row (a) of the figure, the channel introduces two upward errors

www.manaraa.com

7

of magnitude1 (b). By finding the minority between even/odd symbols, the locations of

the errors are detected (c)-in bold, and the original symbols are recovered by decrementing

the erroneous symbols (d).

(a)

(b)

(c)

(d)

Sample 1 Sample 2

codewordcodeword

corruptedcorrupted

locatedlocated

correctedcorrected

0

1

1

1

11

1

2

2

22

2

2

3

3 3

3 3

3

44

4

4

4

5

5

5

5

6

6

6

6

0

1

1 2

2 3

3

4

Figure 1.4:Example of correcting asymmetric limited-magnitude errors. (a) Two sample code-
words. (b) Introduction oft = 2 asymmetric errors with magnitudeℓ = 1 to each of the sample
codewords. (c) Error location by finding the minority between even/odd symbols. (d) Error correc-
tion by decrementing the symbols on the error locations.

In Chapter 2, thet asymmetricℓ-limited-magnitude error model undergoes a compre-

hensive coding-theoretic treatment. Starting from the error-model definition, sufficient and

necessary conditions are proved for codes under that error model, and are then used to con-

struct codes and prove upper bounds on code sizes. For some families of parameters, the

main code construction is shown to be optimal. The results are summarized in Table 1.1

below.

Error model wH(e) ≤ t, 0 ≤ ei ≤ ℓ
Sufficient condition dℓ ≥ t+ 1
Necessary condition dℓ ≥ t+ 1

Constructions Constructions 2.1, 2.2, 2.3
Upper bounds Theorems 2.6, 2.8

Table 1.1: The theory of correcting asymmetric limited-magnitude errors

Beyond its theoretical thrust, Chapter 2 contains multiplecontributions to the appli-

www.manaraa.com

8

cation of asymmetric limited-magnitude codes in Flash storage devices. Using additional

insights on the Flash media, a refined error model is considered; efficientsystematiccode

constructions are proposed, and an implementation architecture is described. Maybe the

most interesting aspect of applying asymmetric limited-magnitude codes to Flash storage,

is that they can be used to speed-up memory write operations by allowing clever introduc-

tion of controlled errors by Flash programming algorithms.This aspect is studied in detail

at the end of Chapter 2, furnishing that opportunity with both qualitative and quantitative

reasoning.

1.3.3 Codes for Random and Clustered Device Failures

Traditionally, MDS (Maximum Distance Separable) array codes are used to protect disk

arrays against device failures. Using MDS codes for that purpose implicitly endorses the

following two statements:

1. All failure patterns are equally likely for a given numberof failed devices.

2. The amount of redundancy has the dominant effect on the implementation cost.

The practical merit of the research detailed in Chapter 3 lies upon the premise that for

high-order failure-resilient disk arrays, both statements are not true in practice. Alternative

statements that motivate this study are:

1. In failure events that affect many devices, combinationsthat include clustered failures

are more likely than completely isolated failures.

2. Because of severe I/O constraints, the limiting factors on the deployment of high-

order failure-correcting codes is their encoding, decoding, and most critically: update

complexity.

The first of these observations motivates a new classification of failure combinations –

based on both the number of failures and the number ofclustersthat the failures occupy.

The well known Random-failure model and Burst-failure model are both special cases at

www.manaraa.com

9

4 shaded squares in4 clusters 4 shaded squares in3 clusters

4 shaded squares in2 clusters 4 shaded squares in2 clusters

Figure 1.5:Classification of patterns by their respective numbers of clusters. For each array, the
number of clusters that contain the four shaded squares is indicated.

the two extremes of this new classification. An abstract classification of patterns according

to the number of clusters is given in Figure 1.5.

Compared to the previously studied model ofmultiple bursts, this model seems to better

capture correlated failure patterns in disk arrays, since it does not predefine thesizeof the

clusters, only their number. Consequently, for the model proposed here, the two patterns at

the bottom of Figure 1.5 have the same classification, even though they have distinct clus-

ter sizes. Those two patterns seem like equally plausible outcomes of two “independent”

failure events, each affecting multiple disks in a single cluster.

Through a new array-code construction called RC (Random/Clustered) codes, Chap-

ter 3 combines the two alternative observations above to offer a very attractive coding

scheme that combines good reliability performance with lowimplementation complexity.

This is done by prioritizing failure combinations based on their cluster classification, and

finding more efficient codes that are specialized for the higher priority failures. Proving

and illuminating the merits of RC codes is the focus of Chapter 3, yet by taking a broader

view they can be regarded as a sample demonstration of the general potential in considering

error models that are based on the new error-clustering classification.

1.3.4 Cyclic Lowest-Density MDS Array Codes

Structureis a blessing to an error-correcting code. While random codes usually have un-

matched error-probability performance, their usage in practical systems is inconceivable

www.manaraa.com

10

due to implementation-complexity issues. There are many examples where more regular

code designs are preferred over unstructured codes, even atthe cost of some degree of

performance loss. Low Density Parity Check (LDPC) codes is one such area where the

challenge of bridging the theoretical state-of-the-art with practical systems involves a care-

ful introduction of structure. It is not just the runtime complexity of the coding blocks that

benefits from conforming to some structural constraints, but also the ease of the system

specification, implementation and verification.

Put in that light, the three new code constructions of Chapter 4 demonstrate clear value.

New highly regular codes with the same favorable propertiesas known, less structured

ones, are an obvious design alternative that can reduce complexity in more than one man-

ner, without compromising the other code properties. The regularity of the proposed array

codes is manifested in theirsystematically-cyclicproperty, which is an especially attractive

sub-class of the well known class ofcyclic codes. An example of a systematically-cyclic

array code is given in the Figure 1.6 below.

+ ++ ++ ++ ++ ++ +

a0

a0a0a0

a1

a1a1a1

a2

a2a2a2

a3

a3a3a3

a4

a4a4a4

a5

a5a5a5

Figure 1.6:Sample systematically-cyclic lowest-density MDS array code. Each column can be
obtained from the column to the left by adding1 (modulo6) to all its indices.

This sample code has the property that any of its columns can be obtained by adding

1 (modulo6) to every index in the column to the left. This property translates to many

advantages in the implementation of systematically-cyclic codes in different data-storage

systems.

Putting in concrete terms, the codes constructed in Chapter4 are lowest-density MDS

array codes that are also systematically-cyclic. The MDS property means that these codes

have optimal redundancy. The lowest-density property means that these codes are optimal

in terms of the number of parity-bit updates needed for a single information-bit update.

Codes that are both lowest density and MDS are known in the literature, but they are still

relatively rare combinatorial structures. Therefore, it comes with some degree of surprise,

that there exist codes that enjoy the lowest density and MDS qualities, while simultaneously

www.manaraa.com

11

having a very nice and useful structure of being systematically-cyclic codes.

1.3.5 Decoding Beyond Half the Minimum Distance

Instances of failed decoding are especially undesirable indata-storage systems, since they

cost a permanent loss of user data. Thus increasing the decoding radius of error-correcting

codes beyond half their minimum distance is an attractive prospect in practice. The two

main challenges of decoding beyond half the minimum distance, called in the literature

list decoding, are the algorithmic feasibility of such decoders, and the effect of non-unique

decoding on the post-decoding error probability. Chapter 5advances our understanding of

both issues, and offers constructive algorithmic improvements to decoding Reed-Solomon

codes beyond half their minimum distance.

With the objective to improve the average decoding complexity of Reed-Solomon list

decoders [GS99], the analysis of interpolation polynomials is refined to understand how

their degrees depend on the number ofinstantaneouserrors. Previous analyses only con-

sidered the number ofworst-caseerrors correctable by the code. By bounding polynomial

degrees from above given an error weight, a strong such dependence is revealed. That phe-

nomenon then motivates finding an interpolation algorithm whose running time depends

on the instantaneous interpolation degree, thus improvingthe average decoding time and

the decoder throughput. A conceptual comparison between the decoding complexity of

list-decoding algorithms before and after the contributions of Chapter 5 is illustrated in

Figure 1.7 below.

The other major thrust of Chapter 5 is to analyze how decodingbeyond the unique-

decoding bound affects the miscorrection probability of list decoders. A high miscorrec-

tion probability means that in practice increasing the decoding radius comes with the cost

of occasionally introducing additional errors instead of correcting existing ones. A new

lower bound on the miscorrection probability of list decoders reveals cases where decoding

beyond the unique-decoding bound provably and significantly increases the probability of

miscorrection. More light on the behavior of list decoders is shed using a new combinato-

rial upper bound on the codeword-list size output by a list decoder of a generalq-ary code.

www.manaraa.com

12

Decode

time

error

weight

(a)

Decode

time

error

weight

(b)

Figure 1.7:Decoding time as a function of the Hamming weight of the errorvector. (a) Previously
known algorithm whose running time depends only on the worst-case error weightt. (b) A new
algorithm and analysis yield running times that decrease asthe error weights decrease.

A closed-form bound is derived that improves over the best-known bound for moderate

and large alphabet sizes. Curiously, the same proof can be used to obtain an upper bound

on the sizes of constant-weight codes, that is better than the classicalq-ary Johnson bound

for moderate and large alphabet sizes. This improvement is accomplished by proving the

following inequality on fundamental coding theoretic entities1:

Aq(n, d, t) ≤ A2(n, 2(d− t), t)

1.4 The Audience of the Thesis

The author perceives himself as both a scientist and an engineer. Moreover, the precedence

order of the two subjective definitions is variable and may change between one day and

the next. Consequently, a blend of practical and theoretical insight has been carefully

interwoven to form a cohesive presentation, which hopefully would make it accessible and

enjoyable for both types of audiences. In the parts that discuss the engineering aspects

of the results, sensible conjectural argumentation was often allowed; but whenever exact

mathematical statements appear, their treatment is carried out with uncompromised rigor.

1Aq(n, d, t) is the size of the largestq-ary constant-weight code of lengthn, weight t and minimum
distanced. A2(n, 2(d− t), t) is the size of the largest binary constant-weight code of lengthn, weightt and
minimum distance2(d− t).

www.manaraa.com

13

The academic prerequisites to access the thesis material are not high. Some very basic

terminology and general understanding of error-control codes may be found helpful.

www.manaraa.com

14

Part I

Error Models and Code Constructions

www.manaraa.com

15

Chapter 2

Asymmetric Limited-Magnitude
Error-Correcting Codes for Multi-Level
Flash Memories

The observation of physical behaviors that significantly and consistently deviate from the

implicit assumptions taken by known models, naturally calls upon new models that better

describe the observed behaviors. When that happens, our common wisdom that has helped

us to understand and tackle old models is abandoned, and a newtheory and design tools

need to be developed. The success of a new model, as an object of study, depends on both

the practical and the theoretical opportunity spaces that it opens. On the practical side,

it should improve matters compared to previously availablesolutions. On the theoretical

side, it should encompass sufficient structure to allow the formulation and manipulation of

meaningful mathematical statements that advance its understanding. This chapter presents

a comprehensive study of a new error model that is motivated by Multi-Level Flash Mem-

ories. The main contributions of the chapter are summarizedbelow.

• Definition and motivation of a new error model:t asymmetricℓ-limited-magnitude

errors.

• A combinatorial necessary and sufficient condition for correctability under the new

error model.

• A general and efficient code construction that is shown to be optimal for useful fam-

ilies of parameters, and to outperform the previously best known codes.

www.manaraa.com

16

• Construction of efficientsystematiccodes to benefit practical implementation.

• Construction of codes for simultaneous asymmetricand symmetricℓ-limited-magnitude

errors.

• Analytic study of the Flash-programming speed-up offered by asymmetric limited-

magnitude error-correcting codes.

Part of the results hereof have appeared in [CSBB07].

2.1 Introduction

A channel, as a mathematical entity [Sha48], specifies the probabilistic relationships be-

tween its inputs and its outputs. The Theory of Information studies ways and limitations to

attain (communicate/store) reliable information, despite the intrinsic unreliability imposed

by the channel. To move from the probabilistic setup of Information Theory to obtain error-

control guarantees, anerror model is derived from the channel model. An error model

renounces the probabilistic description of the errors and instead, specifies combinatorial

constraints on the error-introducing process, in a preciseand deterministic way (usually

assuming a specific finite block length).

The most well studied channel model for error-correcting codes is the symmetric chan-

nel. According to this model, a symbol taken from the code alphabet is changed by an error

event to another symbol from the same alphabet, and all such transitions are equally proba-

ble. The natural error model that corresponds to the symmetric channel is the model ofsym-

metric errors, whereby the Hamming weight is used as a constraint on legal error vectors.

The popularity of the symmetric channel model, and the corresponding Hamming error

model, stem from their applicability to practical applications, but more so from the power-

ful construction techniques that were found to address them. In addition to the symmetric

error model, many other models, variations and generalizations were studied, each moti-

vated by a behavior of practical systems or applications. Examples that are most relevant

to this chapter are thebinary asymmetric, q-ary asymmetric, and Varshamov’sq-ary asym-

www.manaraa.com

17

metric with bounded L1 normerror models, detailed, respectively, in [Klø81], [Web92]

and [Var73].

This chapter studies block codes that correctAsymmetric Limited-Magnitudeerrors.

This model is parametrized by two integer parameters:t is the maximum number of symbol

errors within a code block, andℓ is the maximal magnitude of an error on any code location.

The following example illustrates the coding problem and introduces the main idea of the

code construction. Suppose we have a group of5 symbols, each taken from the alphabet

{0, 1, . . . , 7}. To correctt = 2 errors of magnitudeℓ = 1 in the upward direction, the

code is defined as follows. As illustrated by the sample wordsin Figure 2.1 below, if the

codewords are restricted to have either all symbols with oddparity or all symbols with even

parity, the required protection is achieved. For each of thetwo sample codewords in row

(a) of the figure, the channel introduces two upward errors ofmagnitude1 (b). By finding

the minority between even/odd symbols, the locations of theerrors are detected (c)-in bold,

and the original symbols are recovered by decrementing the erroneous symbols (d).

(a)

(b)

(c)

(d)

Sample 1 Sample 2

codewordcodeword

corruptedcorrupted

locatedlocated

correctedcorrected

0

1

1

1

11

1

2

2

22

2

2

3

3 3

3 3

3

44

4

4

4

5

5

5

5

6

6

6

6

0

1

1 2

2 3

3

4

Figure 2.1:Example of correcting asymmetric limited-magnitude errors. (a) Two sample code-
words. (b) Introduction oft = 2 asymmetric errors with magnitudeℓ = 1 to each of the sample
codewords. (c) Error location by finding the minority between even/odd symbols. (d) Error correc-
tion by decrementing the symbols on the error locations.

As will soon be argued, the model of asymmetric limited-magnitude errors is motivated

www.manaraa.com

18

by the unique error mechanisms that affect reliability and access speed in Multi-Level Flash

Memories. Before clearing the stage for that interesting error model, we summarize in Fig-

ure 2.2 various asymmetric channels and error models. The top row of Figure 2.2 gives

graphical descriptions of three asymmetric channels: the binary asymmetric, theq-ary

asymmetric, and theq-ary asymmetric (ℓ = 1) limited-magnitude channels. The bottom

row specifies error models that are derived from the corresponding channel models, with

references to the first published result for each model. To the best of our knowledge, no re-

sults pertaining to the model oft asymmetric limited-magnitude errors had been published

prior to this chapter’s contributions.

0 00 0

0 0

1 11 1

11

2 22 2

3 33 3

Channel

Models
Error

Binary Asymmetric q-ary Asymmetric Asymmetric Limited-
Magnitude

t Asym. errors

[KF59]

t Asym. errors [Web92]

Bounded L1-norm error

[Var73]

All errors [AAK02]

t errors (this chapter)

Figure 2.2:Asymmetric Channels and Error Models. At the top row are channel diagrams repre-
senting transitions with non-zero probabilities. At the bottom row are combinatorial error models
derived from the corresponding channel models. The citations refer to the first work that considered
each error model.

A natural application for asymmetric limited-magnitude error-correcting codes, and

the primary motivator for their study here, is the ubiquitous Flash data-storage technol-

ogy. The term Flash Memory or Flash Device refers to a Non-Volatile Memory (NVM)

technology that is both electrically programmable and electrically erasable. This property,

together with high storage densities and high speed programming, has made Flash Memory

the dominant non-volatile memory technology and a prominent enabler for many portable

www.manaraa.com

19

applications and technologies. To scale the storage density of Flash memories, theMulti-

Level Flash Cellconcept is used to increase the number of stored bits in a cell[ER99].

Thus each Multi-Level Flash cell stores one ofq levels and can be regarded as a sym-

bol over a discrete alphabet of sizeq. The most conspicuous property of Flash storage

is its inherent asymmetry between cell programming (chargeplacement) and cell erasing

(charge removal). This asymmetry causes significant error sources to change cell levels in

one dominant direction. Moreover, all reported common Flash error mechanisms induce

errors whose magnitudes (the number of level changes) are significantly smaller than the

overall programming window (the alphabet size). These two error characteristics com-

bined, strongly motivate the model of asymmetric limited-magnitude errors studied in this

chapter. In addition to the (uncontrolled) errors that challenge Flash Memory design and

operation, codes for asymmetric limited-magnitude errorscan be used to speed-up memory

access by allowing less precise programming schemes that introduce errors in a controlled

way. For a more detailed discussion of the ways Flash Memories can benefit from the new

codes herein, please refer to section 2.7.

Asymmetric limited-magnitude error-correcting codes were proposed in [AAK02] for

the special caset = n (n is the code-block size). These codes follow Shannon’s general

method for achieving zero-error communication over noisy channels [Sha56], and they turn

out to be a special case of the general construction method provided in this chapter.

The (all even/all odd) sample code described earlier in the chapter is one instantia-

tion of a general construction method that provides codes for all possible code parameters.

The main strength of this method is that for any target alphabet size (determined by the

number of threshold levels), asymmetric limited-magnitude error correctability is inherited

from symmetricerror correctability of codes over alphabets of sizeℓ + 1 (in the case of the

example above, it is the binary repetition code.). Thus a rich selection of known symmetric-

error-correcting codes becomes handy to offer codes that are optimized for the asymmetric

limited-magnitude channel. As a favorable by-product of the construction method, encod-

ing and decoding of the resulting codes are performed on alphabets whose sizes depend

only onℓ, irrespective of the code alphabet (which may be much largerthanℓ). This is a

major advantage in both redundancy and complexity, compared to other proposed codes for

www.manaraa.com

20

Multi-level Flash memories (e.g. [GCKT03]), whose encoding and decoding are performed

over the large code alphabet.

After discussing the asymmetricℓ-limited-magnitude error model in Section 2.2, the

main code construction is presented in Section 2.3, together with encoding and decoding

procedures. Evaluation of the resulting codes is performedin Section 2.4, where asymptotic

optimality is shown forℓ = 1 and for a generalℓ whent grows “slowly” relative to the code

lengthn. A more conclusive optimality is shown by constructing codes that are “perfect”

in the asymmetricℓ-limited-magnitude error model. In addition, Section 2.4 compares the

code sizes to sizes of codes for a related error model. Section 2.5 and Section 2.6 discuss

extensions of the code construction with motivations from practical applications. Those

include the construction of systematic codes (Section 2.5), and codes for simultaneous

asymmetric and symmetric limited-magnitude errors (Section 2.6).

2.2 t Asymmetric ℓ-Limited-Magnitude Error-Correcting

Codes

An alphabetQ of sizeq is defined as the set of integers moduloq: {0, 1, 2, . . . , q− 1}. For

a codewordx ∈ Qn and a channel outputy ∈ Qn, the definition of asymmetric limited-

magnitude errors now follows.

Definition 2.1 A vector of integerse = (e1, . . . , en) is called at asymmetric ℓ-limited-

magnitude error word if |{i : ei 6= 0}| ≤ t, and for all i, 0 ≤ ei ≤ ℓ.

Given a codewordx ∈ Qn, a t asymmetricℓ-limited-magnitude model outputs a vector

y ∈ Qn, such thatx+ e = y, ande is a t asymmetricℓ-limited-magnitude error word.

The + symbol denotes addition over the reals. A generalization ofthe above definition

is when we allow asymmetric errors to wrap around (fromq− 1 back to0), whereby we

interpret the+ symbol above as addition moduloq.

Theq-ary asymmetricℓ-limited-magnitude error model studied in this chapter is agen-

eralization of the binary asymmetric error model studied bynumerous authors (see [Klø81]

for a detailed treatment of this model). Another generalization, proposed by Varshamov [Var73],

www.manaraa.com

21

studiesq-ary asymmetric errors that have no magnitude limit for individual coordinates,

but the sum of the error vector elements is bounded by some integerT. WhenT = tℓ,

codes for the Varshamov model in particular correctt asymmetricℓ-limited-magnitude er-

rors. However, for many applications, such as Multi-Level Flash memories, the Varshamov

model may be a too strong error model. These applications cangreatly benefit from the

constructions presented here, which give better codes in terms of size, and also enjoy sim-

ple encoding and decoding algorithms (the number-theoretic Varshamov codes have no

efficient encoding or decoding algorithms).

The discussion of codes for the asymmetricℓ-limited-magnitude channel model is com-

menced with the definition of a distance that captures the correctability of t asymmetric

ℓ-limited-magnitude errors.

Definition 2.2 For x = (x1, . . . , xn) ∈ Qn andz = (z1, . . . , zn) ∈ Qn, defineN(x, z) =

|{i : xi > zi}| andN(z, x) = |{i : xi < zi}|. The distance dℓ between the wordsx, z is

defined

dℓ(x, z) =

=







n+ 1 if maxi{|xi − zi|} > ℓ

max(N(x, z),N(z, x)) otherwise

Thedℓ distance defined above allows to determine the number ofℓ-limited-magnitude

errors, correctable by a codeC.

Proposition 2.1 A codeC ⊂ Qn can correctt asymmetricℓ-limited-magnitude errors if

and only ifdℓ(x, z) ≥ t+ 1 for all distinct x, z in C.

Proof: A code fails to correct at asymmetricℓ-limited-magnitude error word if and only

if there exist two distinct codewordsx,z and twot asymmetricℓ-limited-magnitude error

wordse, f , such thatx+ e = z+ f , or equivalently,x− z = f − e.
(⇐) Assume that for a pairx,z, dℓ(x, z) ≥ t+ 1. Then at least one of the following

holds:

1. N(x, z) > t orN(z, x) > t

www.manaraa.com

22

2. |xi − zi| > ℓ for at least one indexi ∈ {1, . . . , n}.
Case 1 implies thatf − e has either more thant positive elements or more thant

negative elements, none of which is possible by the definition of the error vectorse, f .

Case 2 implies that for somei, eitherei > ℓ or fi > ℓ, both impossible by the definition

of e, f .

Since the same arguments apply to anyx,z in the code, the code necessarily corrects all

possiblet asymmetricℓ-limited-magnitude errors.

(⇒) Assume there exist a pair of codewordsx,z, for which dℓ(x, z) ≤ t < n. Then

bothN(x, z) ≤ t andN(z, x) ≤ t are true, and|xi − zi| ≤ ℓ at all indicesi. In that case

we can setfi = xi − zi at all indicesi such thatxi > zi andei = zi − xi at all indicesi

such thatzi > xi. With zeros at all other indices, suche, f satisfyx− z = f − e without

violating the conditions oft asymmetricℓ-limited-magnitude errors. 2

Although the asymmetricℓ-limited-magnitude distance measuredℓ is not a metric, i.e.

the triangle inequality does not hold, it still provides a necessary and sufficient condition

for the correctability of asymmetricℓ-limited-magnitude errors. In subsequent sections, it

will be used both to prove the correction capability of code constructions, and to obtain

upper bounds on the size of codes.

2.3 Construction of t Asymmetric ℓ-Limited-Magnitude

Error-Correcting Codes

We now provide the main construction of the chapter. For notational convenience, given

x = (x1, . . . , xn), the vector(x1 mod q′, x2 mod q′, . . . , xn mod q′) will be denoted

by x mod q′. To obtain a code over alphabetQ that correctst or less asymmetric errors

of ℓ-limited-magnitude, one can use codes for symmetric errorsover small alphabets as

follows.

Construction 2.1 Let Σ be a code over the alphabetQ′ of sizeq′ = ℓ + 1. The codeC

www.manaraa.com

23

over the alphabetQ of sizeq (q > ℓ + 1) is defined as

C = {x = (x1, . . . , xn) ∈ Qn : x mod (ℓ + 1) ∈ Σ}. (2.1)

In words, the codewords ofC are the subset of the words ofQn that are mapped to code-

words ofΣ, when their symbols are reduced moduloq′ = ℓ + 1.

Codes obtained by Construction 2.1 have the following errorcorrection capability.

Theorem 2.2 C correctst asymmetricℓ-limited-magnitude errors ifΣ correctst symmetric

errors. If q > 2ℓ,1 the converse is true as well.

Proof: The proof proceeds by showing that any pair of codewordsx, z in C is atdℓ dis-

tance of at mostt+ 1 apart. By Proposition 2.1, this would conclude thatC corrects allt

asymmetricℓ-limited-magnitude errors. We distinguish between two cases.

1. x mod (ℓ + 1) = z mod (ℓ + 1)

2. x mod (ℓ + 1) 6= z mod (ℓ + 1)

Sincex 6= z, Case 1 implies that for at least one indexi ∈ {1, . . . , n}, |xi − zi| > ℓ,

settling theirdℓ distance to ben+ 1.

Case 2, and the fact thatΣ has minimum Hamming distance of at least2t+ 1, imply that

x andz differ in at least2t+ 1 locations and thus, in particular,max(N(x, z),N(z, x)) ≥
t+ 1.

For the converse, ifΣ does not correct allt symmetric errors, then there exists a quadru-

ple(χ ∈ Σ,ζ ∈ Σ, e, f), such thatχ+ e = ζ+ f (mod ℓ+ 1), ande, f aret asymmetric

ℓ-limited-magnitude error vectors. Therefore, the vectorsx = χ+ (ℓ + 1) · ∆(ζ + f −
χ − e) and z = ζ + (ℓ + 1) · ∆(χ + e − ζ − f), (where∆(v) is a vector with ones

wherevi > 0 and zeros elsewhere), are codewords ofC and they satisfyx+ e = z+ f .

Sinceq > 2ℓ, the last sum is a valid channel output. We conclude that there exists an

uncorrectable error word forC, and the converse follows. 2

1a reasonable assumption since the best codes are obtained whenq >> q′

www.manaraa.com

24

Construction 2.1 is clearly useful as it leverages the comprehensively studied theory

of codes for symmetric errors, to obtain codes for asymmetric limited-magnitude errors.

However, Construction 2.1 is a special case of the followingconstruction.

Construction 2.1A. LetΣ be a code over the alphabetQ′ of sizeq′. The codeC over the

alphabetQ of sizeq (q > q′ > ℓ) is defined as

C = {x = (x1, . . . , xn) ∈ Qn : x mod q′ ∈ Σ}. (2.2)

The relationship betweenC andΣ in the general case are summarized below. The proof

is almost identical to that of Theorem 2.2.

Theorem 2.3 C correctst asymmetricℓ-limited-magnitude errors ifΣ correctst asymmet-

ric ℓ-limited-magnitude errors with wrap-around. Ifq ≥ q′ + ℓ, the converse is true as

well.

Remark:If q′ | q thenC correctst asymmetricℓ-limited-magnitude errorswith wrap-

aroundfor Σ with the same properties as above.

It is easy to see how Construction 2.1 is a special case of Construction 2.1A. When

q′ = ℓ + 1, an asymmetricℓ-limited-magnitude error with wrap-around is equivalent to a

symmetric error (with no magnitude limit).

2.3.1 Discussion and analysis of the code constructions

The size of the codeC is bounded from below and from above by the following theorem.

Theorem 2.4 The number of codewords in the codeC is bounded by the following inequal-

ities.
⌊
q

q′

⌋n

· |Σ| ≤ |C| ≤
⌈
q

q′

⌉n

· |Σ| (2.3)

Proof: Letχ = (χ1, . . . , χn) be a codeword ofΣ. A valid codeword ofC can be obtained

by replacing eachχi by any element of the set{x ∈ Q : x = χi (mod q′)}. The size of

this set is⌈q/q′⌉ if χi < q mod q′ and⌊q/q′⌋ otherwise. Thus for any codeΣ, the lower

and upper bounds above follow. 2

www.manaraa.com

25

In the special case whenq′ = 2, the size ofC can be obtained exactly from the weight

enumerator ofΣ.

Theorem 2.5 Let q′ = 2 andΣ be a code overQ′ = {0, 1}. Then the size of the codeC,

as defined in(2.2), is given by

|C| =
n

∑
w=0

Aw

⌈q

2

⌉n−w ⌊q

2

⌋w

whereAw is the number of codewords ofΣ with Hamming weightw.

Proof: When2 | q, the right hand side equals(q/2)n · |Σ|, as the matching lower and

upper bounds of (2.3) predict. When2 ∤ q, a 0 in χ can be replaced by⌈q/2⌉ different

symbols ofQ and a1 in χ can be replaced by⌊q/2⌋ different symbols. Using the weight

enumerator ofΣ we obtain the exact value for the size ofC above. 2

This theorem can be extended toq′ > 2, but in such cases knowing the weight distri-

bution ofΣ does not suffice, and more detailed enumeration of the code isneeded for an

exact count.

Theℓ-AEC codes suggested in [AAK02], that correct all asymmetric ℓ-limited-magnitude

errors, can also be regarded as a special case of this construction method. To show that,

let 0 be the trivial lengthn code, over the alphabetQ′ of sizeℓ + 1, that contains only the

all-zero codeword. Define

C = {x ∈ Qn : x mod (ℓ + 1) ∈ 0}

= {x ∈ Qn : xi ≡ 0 mod (ℓ + 1) for i = 1, 2, . . . , n} [AAK02].

Since0 can correctt = n symmetric errors,C can correctt = n asymmetricℓ-limited-

magnitude errors.

2.3.2 Decoding

The main construction of this chapter (Construction 2.1) reduces the problem of construct-

ing asymmetricℓ-limited-magnitude error-correcting codes, to the problem of constructing

www.manaraa.com

26

codes for symmetric errors. The correction capability of the code constructions was proved

in section 2.3 using arguments on their minimumdℓ distance, arguments that have a non-

algorithmic character. We next show that a similar reduction applies also to the algorithmic

problem of efficiently decoding asymmetricℓ-limited-magnitude error-correcting codes.

In the following, we describe how, given a decoding algorithm for the codeΣ, one

can obtain a decoder for the codeC, that has essentially the same decoding complexity,

with only a few additional simple arithmetic operations. The decoding procedure herein

refers to the more general Construction 2.1A, and it clearlyapplies to the special case of

Construction 2.1 (q′ = ℓ + 1).

Let x = (x1, . . . , xn) ∈ C be a codeword andy = (y1, . . . , yn) ∈ Qn be the channel

output when up tot asymmetricℓ-limited-magnitude errors have occurred. Denote the

correspondingΣ codeword byχ = x mod q′, and also defineψ = y mod q′ andǫ =

(ψ− χ) (mod q′). First we observe that sinceq′ > ℓ, if 0 ≤ yi − xi ≤ ℓ thenyi − xi =
(yi − xi) mod q′. Using the simple modular identity

(yi − xi) mod q′ = (yi mod q
′ − xi mod q′) mod q′

= (ψi − χi) mod q′ = ǫi,

we get thatyi − xi = ǫi, and in particular, if0 ≤ yi − xi ≤ ℓ, then0 ≤ ǫi ≤ ℓ. In

other words, if the codewordx overQ suffered an asymmetricℓ-limited-magnitude error

at locationi, then the codewordχ overQ′ suffered an asymmetricℓ-limited-magnitude

error with wrap-around at the same locationi, and with the same magnitude. Given at most

t asymmetricℓ-limited-magnitude errors with wrap-around, a decoder forΣ can recoverǫ

fromψ. Thus, the equalityyi − xi = ǫi allows the same decoder to recoverx from y.

A schematic decoder of an asymmetricℓ-limited-magnitude error-correcting codeC
that uses a decoder for a symmetric error-correcting codeΣ is given in Figure 2.3. Given

a channel outputy ∈ Qn, the decoder takes the symbol-wise moduloq′ of y to obtain

ψ ∈ Q′ n . Then a decoder forΣ is invoked with the inputψ and an error estimatêǫ is

obtained such that̂χ + ǫ̂ ≡ ψ mod q′, andχ̂ is a codeword ofΣ within the correction

radius of the decoder forΣ. Note that the codeword estimateχ̂ is discarded and not used

www.manaraa.com

27

for the decoding ofC. Finally, ǫ̂ is subtracted fromy to obtain the codeword estimate

x̂ ∈ C.

PSfrag

y ∈ Qn
modq′ ψ Decoder for

Σ

ǫ̂

χ̂ ∈ Σ

x̂ ∈ C
+

−

Figure 2.3:Decoding asymmetricℓ-limited-magnitude error-correcting codes. A decoder forΣ is
run on the received symbols moduloq′, and the error estimate of the decoder is subtracted from the
original received wordy.

2.3.3 Encoding

Construction 2.1 (and 2.1A) defined the codeC as a subset ofQn, without specifying how

information symbols are mapped to codewords. There are manyways to map information

to codewords ofC, and the simplest one, that applies to anyq, q′ such thatq | q′, is detailed

below. For an alphabet of sizeq = A · q′, whereA, q′ are integers, information is mapped

to a lengthn codeword ofC as follows. n symbols,(a1 , . . . , an), over the alphabet of

sizeA are set as pure information symbols. Additionally,k information symbols over the

alphabet of sizeq′ are input to an encoder ofΣ to obtainn symbols,(χ1, . . . , χn), over the

same alphabet. Finally, each code symbolxi overQ is calculated byai · q′ + χi.
Other encoding functions can map information symbols to codewords ofC in a different

way than the simple encoding function above. Different mappings with good properties are

discussed in Section 2.5 and Section 2.6.

Example 2.1 now attempts to convey the main ideas of the encoding and decoding of

asymmetricℓ-limited-magnitude error-correcting codes.

Example 2.1 LetΣH be the binary2 Hamming code of lengthn = 2m− 1, for some integer

2Non-binary Hamming codes can be used as well whenℓ > 1.

www.manaraa.com

28

m. First we define the codeCH in the way of Construction2.1.

CH = {x = (x1, . . . , xn) ∈ Qn : x mod 2 ∈ ΣH}.

By the properties ofΣH, the codeCH corrects a single asymmetricℓ = 1 limited-magnitude

error. When the code alphabet size isq = 2b, for some integerb, the perfect codeCH, whose

size equals|CH| = An · q′n−m = 2(b−1)n · 2n−m = 2nb−m by equation(2.3), admits a

simple function fromnb − m information bits to codewords ofCH overQ, as illustrated

in Figure 2.4 below. In Figure2.4 (a), nb −m information bits are input to the encoder.

The encoder then uses a binary Hamming encoder to encoden−m of the information bits

into a lengthn Hamming codeword (Figure2.4 (b)). Finally, in Figure2.4 (c), eachq-ary

symbol of the codewordx ∈ CH is constructed fromb bits using the usual binary-to-integer

conversion, the top row being the least-significant bits ofxi ∈ Q. Decoding is carried out

(a) (b)

(c)

n n

m

b b
n(b− 1) info n(b− 1) info

n−m info n−m infom parity ∈ ΣH

xi ∈ Q = {0, 1, . . . , 2b − 1}

lsb

msb

Figure 2.4:Encoding Procedure forCH. (a) Input information bits. (b) Encoding the top row of
bits. (c) Mapping bit column vectors to symbols over the alphabet of the codeCH.

by using a Hamming decoder on the top row to find the limited-magnitude error location

and magnitude (for binary Hamming codes the magnitude is always1). The top row word

is not corrected by the Hamming decoder, but rather the error magnitude is subtracted

from theQ-ary wordy to obtain a decoded codeword. To recover the information bits after

www.manaraa.com

29

decoding, theQ symbols are converted back to bits in the usual way, and them parity bits

are discarded.

2.4 Optimality of the Code Construction and Comparison

to Related Codes

2.4.1 Perfect Codes

For some parameters, the codes constructed in the previous section are the best conceiv-

able ones for the asymmetricℓ-limited-magnitude error model. These codes areperfect

codes in the sense that they attain the sphere-packing boundfor asymmetricℓ-limited-

magnitude errors. Theq-ary symmetric sphere-packing bound is first generalized toasym-

metricℓ-limited-magnitude errors (with wrap-around), and then itis shown that asymmet-

ric ℓ-limited-magnitude error-correcting codes that meet thisbound with equality can be

obtained by using other known perfect codes, e.g., perfect codes in the Hamming metric.

Theorem 2.6 If C is at asymmetricℓ-limited-magnitude (with wrap-around) error-correcting

code, of lengthn over an alphabet of sizeq, then

|C| ·
t

∑
i=0

(
n

i

)

ℓi ≤ qn (2.4)

Proof: The proof uses the same arguments as the proof for symmetric errors. Assume

the number of(x,ǫ) pairs exceedsqn, wherex is a codeword andǫ is a t asymmetric

ℓ-limited-magnitude error word. Then there exists a vectory ∈ Qn such that

y = x+ǫ = x′ +ǫ′

where eitherx 6= x′ or ǫ 6= ǫ′ (or both). If x 6= x′ then we have a contradiction since

giveny the decoder will not be able to distinguish betweenx andx′. If x = x′, the additive

property of the channel impliesǫ = ǫ′ as well, in contradiction to the assumption that

(x,ǫ) 6= (x′,ǫ′). Therefore the product of the code size and the number of admissible

www.manaraa.com

30

errors cannot exceedqn which gives the bound provided. 2

Perfectt asymmetricℓ-limited-magnitude error-correcting codes are obtained through

the following proposition.

Proposition 2.7 If there exists a perfect asymmetricℓ-limited-magnitude code over an al-

phabet of sizeq′, then there exists a perfect asymmetricℓ-limited-magnitude code with the

same length, over an alphabet of any sizeq, such thatq′ | q, that corrects the same number

of errors.

Proof:

Let C andΣ be as in Construction 2.1A. We first substitute the expression for the code

size from (2.3) into the left side of the sphere packing bound

|C| ·
t

∑
i=0

(
n

i

)

ℓi =

(
q

q′

)n

· |Σ| ·
t

∑
i=0

(
n

i

)

ℓi .

If the codeΣ over the alphabet of sizeq′ is perfect, then its size satisfies

|Σ| ·
t

∑
i=0

(
n

i

)

ℓi = q′n

Substituting the latter into the former we get

|C| ·
t

∑
i=0

(
n

i

)

ℓi =

(
q

q′

)n

· q′n = qn,

which completes the proof.

2

Alternatively, perfect codes are codes which induce a partition of the space into error

spheres. As was already noted, whenq′ = ℓ + 1, the t asymmetricℓ-limited-magnitude

error sphere coincides with the Hamming metrict symmetric error sphere. Thus, taking

Σ to be a perfect code in the Hamming metric (e.g., Hamming or Golay codes), produces

perfect asymmetricℓ-limited-magnitude error-correcting codes over an alphabet of sizeq,

whereq′ | q.

www.manaraa.com

31

Other perfect codes may exist even whenq′ 6= ℓ + 1. For example, whent = 1,

the asymmetricℓ-limited-magnitude error sphere is the semi-cross examined by Stein in

[Ste84].

One may wonder if anyinherentlynew perfect code are produced by Construction 2.1A.

The answer, unfortunately, is no: Construction 2.1A simplytakes translations of the tiling

provided by the base codeΣ to accommodate for the larger alphabet. This is depicted in

the following example.

Example 2.2 Let Σ be the perfect ternary lengthn = 2 code capable of correcting one

asymmetric1-limited-magnitude error,Σ = {00, 11, 22}. The code induces a tiling ofZ23

with the error sphere, and is shown in Figure2.5. Since this tiling is with wrap-around, it

also induces a natural tiling with wrap-around ofZ23k for everyk ∈ N. Specifically, forC,

the code over an alphabet of size6 produced fromΣ by Construction2.1A, the resulting

tiling is also shown in Figure2.5.

(a) (b)

Figure 2.5:Asymmetric limited-magnitude error-correcting codes as tilings. In Example 2.2, the
tilings induced by (a) the codeΣ, and (b) the codeC.

2.4.2 Asymptotic optimality of Construction 2.1

The implication of Construction 2.1 is that “large” codes for symmetric errors over an al-

phabet of sizeℓ + 1 imply “large” codes for asymmetricℓ-limited-magnitude errors over

any larger alphabet. Showing the reverse implication, namely that “large” codes for asym-

metric ℓ-limited-magnitude errors imply “large” codes for symmetric errors, would con-

clude that Construction 2.1 is optimal in terms of the resulting code sizes. Optimality

www.manaraa.com

32

is achieved in this case since given the “large” code for symmetric errors implied by the

reverse direction, Construction 2.1 can be invoked to yieldcode of the same size as the

original “large” code for asymmetricℓ-limited-magnitude errors. The purpose of this sub-

section is to show that asymptotically, Construction 2.1 gives the largest possible codes for

asymmetricℓ-limited-magnitude errors.

Definition 2.3 Define therate R of a codeC of lengthn over an alphabet of sizeq as

R =
1

n
logq |C|

where|C| is the number of codewords inC.

Theorem 2.8 If C̃ is a t asymmetricℓ-limited-magnitude error-correcting code with rate

R and block-lengthn that tends to infinity, then

1) Whenℓ = 1 and for arbitraryt, there exists a codeC, constructed by Construction2.1,

with the same rateR.

2) For a generalℓ and for t = o(n/ log n) (i.e. limn→∞ t log n/n = 0: t has a slower

growth compared ton/ log n), there exists a codeC, constructed by Construction2.1, with

the same rateR.

Proof: We first give an overview of the proof technique using the diagram of Figure 2.6.

Construction 2.1 allows obtaining codes for asymmetricℓ-limited magnitude errors from

codes for symmetric errors with an inflation factorKq,ℓ(n) , qn/(ℓ + 1)n (upper part

of Figure 2.6). To prove that the construction is optimal, weneed to prove the converse

– that codes for symmetric errors can be obtained from codes for asymmetricℓ-limited

magnitude errors with asymptotically equivalent deflationfactor (lower part of Figure 2.6).

The way this is done in the proof is by first proving the existence of codes forasymmet-

ric errors with deflation factorKq,ℓ(n), and then showing that codes for symmetric errors

are equivalent in rate to codes for asymmetric errors. The composition of these two steps

establishes the asymptotic rate optimality of Construction 2.1. To exercise the proof ideas

above we introduce the following notation. LetAℓMa(n, t) be the size of the largest length

n code that correctst asymmetricℓ-limited-magnitude errors over an alphabet of sizea.

www.manaraa.com

33

Construction:

Converse:

Symmetric AℓM

Asymmetric

|Σ|

|Σ| |C|

|C|

|ΣA|

×Kq,ℓ(n)

/Kq,ℓ(n)

/const(n)
or

/poly(n)
⇐⇐

=⇒

Figure 2.6:Idea of rate-optimality proof. The converse at the lower part of the diagram is proved
in two steps. First large codes for asymmetric errors are proved to exist; then small (constant or
polynomial) gaps between codes for asymmetric and symmetric errors are proved.

Let Asyma(n, t) be the size of the largest lengthn code that correctst asymmetric errors

(symbols change only in the upward direction, with no magnitude limit), over an alpha-

bet of sizea. Finally, let Aa(n, t) be the size of the largest lengthn code that correctst

symmetric errors, over an alphabet of sizea. Aa(n, t) used here is a replacement of the

more commonly usedAa(n, d) [HP03, Ch.2], whereby the parameterd stands for the min-

imum Hamming distance of the code instead of the number of correctable symmetric errors

(thereforeAa(n, t) = Aa(n, 2t+ 1)).

To avoid the excessive use of the⌈·⌉ operator, assume that(ℓ + 1) | q. The set of all

qn words over the alphabet of sizeq is partitioned intoqn/(ℓ + 1)n subsets, each of size

(ℓ + 1)n, as follows. Each subset contains a single word whose symbol-wise moduloℓ + 1

equals the all zero vector. In addition to this vector, the subset contains the sum of that

vector with all(ℓ + 1)n − 1 non-zero vectors over the alphabet of sizeℓ + 1. Each subset

has the property that no two words within it differ in any coordinate by more thanℓ. A

sample such partition forn = 2, q = 4 andℓ = 1 is given below.

0 0 0 2 2 0 2 2

0 1 0 3 2 1 2 3

1 0 1 2 3 0 3 2

1 1 1 3 3 1 3 3

www.manaraa.com

34

This property is equivalent to havingdℓ(x, z) < n+ 1 for everyx, z in the subset.

Suppose there is a codẽC that correctst asymmetricℓ-limited-magnitude errors. Then

there exists at least one subset, with at least|C̃|(ℓ + 1)n/qn codewords ofC̃. Since any

two codewordsx, z in that subset satisfydℓ(x, z) < n + 1, each such pair has to satisfy

max(N(x, z),N(z, x)) > t. In other words, the codewords ofC̃ that belong to the same

subset, form a code that correctst asymmetric errors with no magnitude limit of size at

least|C̃|(ℓ + 1)n/qn. Without loss of generality, the subset with many codewordsis the

one that contains the all zero codeword. Generality is maintained since neitherN(x, z) nor

N(z, x) are changed when a constant vector is subtracted from bothx andz. Consequently,

the codewords of this subset imply the existence of a code over an alphabet of sizeℓ + 1

that correctst asymmetric errors with no magnitude limit. Formally,

Asymℓ+1(n, t) ≥
(

ℓ+1
q

)n
AℓMq(n, t)

on the other hand, Construction 2.1 and Theorem 2.4 provide the following lower bound

onAℓMq(n, t):

AℓMq(n, t) ≥ (q
ℓ+1)

n
Aℓ+1(n, t)

Combining the lower and upper bounds we obtain

Aℓ+1(n, t) ≤
(

ℓ+1
q

)n
AℓMq(n, t) ≤ Asymℓ+1(n, t) (2.5)

which is consistent with the trivial inequalityAℓ+1(n, t) ≤ Asymℓ+1(n, t) (any code for

symmetric errors is also a code for asymmetric errors). The proof of the theorem is achieved

by bounding the gap betweenAℓ+1(n, t) andAsymℓ+1(n, t) using the following lemmas.

Lemma 2.9 [Bor81]: A2(n, t) ≥ 1
t+1Asym2(n, t).

Proof: See [Klø81]. 2

Lemma 2.10 Aℓ+1(n, t) ≥ 1
(nℓ)2t

Asymℓ+1(n, t).

Proof: We will show that a code for symmetric errors can be obtained from a code for

asymmetric errors by expurgating all but at least a1/(nℓ)2t fraction of codewords of the

www.manaraa.com

35

asymmetric-error-correcting code. Any two codewords in at asymmetric-error-correcting

code have Hamming distance of at leastt+ 1. Any two codewords in at symmetric-error-

correcting code have Hamming distance of at least2t+ 1. The number of words (and in

particular, an upper bound on the number of codewords) that are at distance betweent+ 1

and2t from a codeword of at asymmetric-error-correcting code is

2t

∑
i=t+1

(
n

i

)

ℓi = ℓt
t

∑
i=1

(
n

t+ i

)

ℓi

Since(nt+i) < nt+i/t,

ℓt
t

∑
i=1

(
n

t+ i

)

ℓi < (nℓ)2t

and thus expurgating all but at least1/(nℓ)2t of the codewords, yields a code fort sym-

metric errors:

Aℓ+1(n, t) >
1

(nℓ)2t
Asymℓ+1(n, t)

2

Combining Lemma 2.9 with (2.5), forℓ = 1 we obtain

(q

2

)n
A2(n, t) ≤ AℓMq(n, t) ≤ n

(q

2

)n
A2(n, t)

While Lemma 2.10 end (2.5) imply, for generalℓ,

(q
ℓ+1)

n
Aℓ+1(n, t) ≤ AℓMq(n, t) ≤ (nℓ)2t(q

ℓ+1)
n
Aℓ+1(n, t)

Taking the logarithm, dividing byn and taking the limitn → ∞, the upper and lower

bounds ofAℓMq(n, t) are identical for bothℓ = 1 and for generalℓ (under the restrictions

on t of part 2 of the theorem). Hence asymmetricℓ-limited-magnitude codes obtained from

symmetric codes by Construction 2.1 are asymptotically optimal. 2

www.manaraa.com

36

2.4.3 Comparison to Varshamov codes

Prior to this chapter’s introduction of thet asymmetricℓ-limited-magnitude error model,

the closest error model that achieves this correction capability is the q-ary asymmetric error

model proposed by Varshamov [Var73]. In particular, the known codes for the Varshamov

model are better than known codes for symmetric errors. According to the Varshamov

model, parametrized by an integer parameterT, if a vectorx = (x1, . . . , xn) overQn is

transmitted, the channel output is a vectorx+ e overQn, such thatei ≥ 0 and∑ni=1 ei ≤ T
(the addition and summation are over the reals). WhenT = tℓ, aT error correcting code for

the Varshamov channel is also at asymmetricℓ-limited-magnitude error-correcting code.

Since theT = tℓ Varshamov model allows errors that are not allowed by thet asymmetric

ℓ-limited-magnitude channel (i.e. errors with high magnitudes, which are unlikely in the

target application), we expect the code constructions of this chapter to yield better codes

compared to the best known Varshamov codes. This section thus compares between sizes

of codes that are obtained using Construction 2.1, and lowerbounds, provided in [McE73],

on the sizes of various Varshamov codes. This comparison is incomplete since it only

discusses thesizesof the codes. Evidently,t asymmetricℓ-limited-magnitude codes enjoy

efficient encoding and decoding procedures, a property which Varshamov codes are not

known to have in general. We also do not discuss the restrictions on the block sizesn of

the code constructions, in order to avoid overloading the discussion with secondary details.

2.4.3.1 Comparison forℓ = 1

When the asymmetric errors have a magnitude limit ofℓ = 1, we compare the codes of

Construction 2.1 to Varshamov codes withT = t. Whent = 1, the two error models are

identical and both constructions yield codes that are perfect in that metric, whose sizes are

qn/(n + 1). Whent = 2, Varshamov codes are known to haveqn/(n2 + n + 1) code-

words, while using the (punctured) Preparata codes [MS77, Ch.15] in Construction 2.1

gives2qn/(n + 1)2, roughly twice as many codewords. For a generalt, there exist Var-

shamov codes with sizesqn/(n + 1)t. If we apply Construction 2.1 with BCH codes

with designed distance2t + 1, we get the same code size. However, using the Goppa

www.manaraa.com

37

codes [MS77, Ch.12] instead gives a superior size ofqn/nt codewords.

2.4.3.2 Comparison for a generalℓ

While for ℓ = 1 the advantage of the codes for asymmetricℓ-limited-magnitude errors in

terms of the code sizes is small, for largerℓ values these codes are significantly larger than

Varshamov codes. Even if we only use(ℓ + 1)-ary BCH codes in Construction 2.1, codes

of sizesqn/(n+ 1)t
′
are obtained, wheret′ = 2tℓ/(ℓ + 1). Comparing toqn/(n+ 1)ℓt

of Varshamov codes shows a significant advantage to the favorof Construction 2.1 since

t′ ≤ min(ℓt, 2t).

2.5 Systematic Asymmetric Limited-Magnitude Error-Correcting

Codes

All its advantages notwithstanding, Construction 2.1 suffers the shortcoming of not admit-

ting a systematic representation overQ. A codeC over an alphabetQ is said to be in

systematic form if its coordinates{x1, . . . , xn} can be partitioned into an information set

I = {x1, . . . , xk} and a parity setP = {xk+1, . . . , xn}, such that each symbol inP is a

function of symbols inI only. As seen in Figure 2.4(b),m code symbols contain parity

contribution. Each of thesem symbols also has a pure-information component, so it can

neither belong to theP set, nor to theI set of a systematic-code coordinate set. This non-

systematic structure implies that “many” code symbols contain some parity contribution: a

bad property in practice as it dictates accessing many Flashcells for each information up-

date. In this section we proposesystematicasymmetric limited-magnitude error-correcting

codes that have fewer parity symbols.

2.5.1 Systematic codes forℓ = 1 limited-magnitude errors

When the error magnitudeℓ is bounded by1, the codeΣ in Construction 2.1 is a binary

code. As we show next for this case, a modification of any codeC can be carried out, that

www.manaraa.com

38

yields a systematic code with the same correction capability. The construction method of

systematic codes forℓ = 1 is first presented in Example 2.3.

Example 2.3 In this example we propose a systematic variant to the codeCH, given in Ex-

ample2.1. The encoding function given below generates a code that hasthe same correc-

tion capabilities asCH, namely any singleℓ = 1 asymmetric error is correctable, though

the resulting code is different. Specifically, the dimensions of the systematic code are differ-

ent. For this example we assume that the alphabet size of the code is2m (m – the number

of parity bits in the binary code), compared to2b for arbitrary b in CH. This assumption

can be lifted with a small increase in redundancy that depends on the actual code param-

eters. For an[n, k = n−m] binary Hamming codeΣH, the length of the systematic code

is n−m+ 1, compared ton in the non-systematic case. The systematic code is encoded

as follows. In Figure2.7 (a), km information bits are input to the encoder. The encoder

then uses a binary Hamming encoder to encode thek information bits of the top row into

a lengthn = k+m Hamming codeword (Figure2.7 (b)). The parity bits of the Hamming

codeword are now placed as a separate column. The mapping of bits toQ symbols, shown

in Figure 2.7 (c), is the usual (positional) mapping for thek information symbols and the

Gray mapping for the parity symbol.

To decode, a word ofQk+1 is converted back to bits using the same mappings, and a

binary Hamming decoder is invoked for then coded bits. By construction, a singleℓ = 1

asymmetric error overQ translates to a single bit error in the Hamming codeword: in

thek information symbols, anℓ = 1 error flips the least-significant bit that is part of the

Hamming codeword, and in the parity symbol, anℓ = 1 error flips exactly one parity bit in

the column, thanks to the Gray code used in the mapping.

The code proposed in Example 2.3, together with its encoding/decoding, can be gener-

alized to anyℓ = 1 limited-magnitudet asymmetric error-correcting code as stated by the

following proposition.

Proposition 2.11 LetΣ be a binary systematic code of lengthn andm ≤ b · r parity bits,

for any two integersr andb > 1. If Σ correctst symmetric errors, then it can be used to

construct asystematict asymmetricℓ = 1 limited-magnitude error-correcting code over

www.manaraa.com

39

(a) (b)

(c)

k

m mkm infokm info

m
p

ar
ity

m
p

ar
ity

m
in

fo

∈ ΣH

xi ∈ Q xi ∈ Q
positional Gray

lsblsb

msbmsb

Figure 2.7: Encoding procedure for a systematic code withℓ = 1. (a) Input information bits.
(b) Encoding the top row of information bits followed by the placement of parity bits in a separate
column. (c) Mapping bit column vectors to symbols over the alphabet of the code. The standard
positional mapping for information columns and the Gray mapping for parity columns.

an alphabet of sizeq = 2b. This code has lengthn−m+ r, of whichr symbols are parity

symbols.

Proof: The general construction follows closely the one in Example2.3. n−m infor-

mation bits are used to encode a codeword ofΣ. Them ≤ br parity bits are grouped into

r columns ofb bits each. Then theser columns are mapped toQ symbols using the Gray

mapping and information bits are mapped to symbols using thepositional mapping. The

property that each limited-magnitude error results in one symmetric error in the codeword

of Σ is preserved for this general case. 2

2.5.2 Systematic codes forℓ > 1 limited-magnitude errors

If we try to extend the construction of the previous sub-section to codes forℓ > 1 limited-

magnitude errors, we immediately face a stumbling block. Although generalized Gray

codes exist for non-binary alphabets, their properties do not suffice to guarantee a simi-

lar general construction. The crucial property, that a single asymmetric limited-magnitude

error translates to a single symmetric error in the(ℓ + 1)-ary code, is lost for the general

case. For example, if forℓ = 2 a symbol represents the ternary reflected Gray code-

www.manaraa.com

40

word 0001, then an error of magnitude2 will result in the Gray codeword0012, whose

Hamming distance to0001 is 2 and not1 as required. Thus, a limited-magnitude error

at this symbol may induce2 errors for the ternary codeΣ. Evidently, this effect is not

unique to the(ℓ + 1)-ary reflected Gray code, and there is no mapping betweenq-ary sym-

bols{0, 1, . . . , (ℓ + 1)b − 1} and(ℓ + 1)-ary b-tuples with this property. This sub-section

proposes a construction for systematic asymmetricℓ-limited-magnitude error-correcting

codes, for arbitraryℓ.

The construction of systematic asymmetricℓ-limited-magnitude error-correcting codes

builds on the non-systematic Construction 2.1. Two modifications of Construction 2.1 need

to be instituted to yield a systematic code. The first is usinga codeΣ′ that has different

correction properties thanΣ used before. The second is a special mapping between parity

symbols ofΣ′ and code symbols ofC ′ overQ.

Let q andq′ = ℓ + 1 be the alphabet sizes of the codesC ′ andΣ, respectively. Assume

for simplicity that q = 2(ℓ + 1)s, for some integers. If this is not the case, the same

construction can still be used, only the mappings betweenQ′ andQ will be slightly more

complicated.

The codeΣ′

Let Σ be a linear systematic code over an alphabet of sizeq′ = ℓ + 1. The number of

information symbols ofΣ is denotedκ, and the number of parity symbols ism. The parity-

check matrix ofΣ is denoted byH. Columns{0, . . . ,m − 1} of H correspond to them

parity symbols of the codeΣ. LetH′ be the parity-check matrix that is obtained fromH by

replicating all columns ini ∈ {0, . . . ,m− 1} such thati 6≡ 0 (mod s), and appending

them toH. H′ is the parity-check matrix of the linear codeΣ′ that hasm parity symbols

andκ+ ⌊m(s− 1)/s⌋ information symbols.

The mappingQ′ ↔ Q for parity symbols

From them parity symbols ofΣ′, each group ofs parity symbols, denotedφ(j)
0 , . . . ,φ

(j)
s−1,

is mapped to a single parity symbol ofC ′ using the following formula

x j = φ
(j)
0 + 2

s−1
∑
i=1

φ
(j)
i (ℓ + 1)i . (2.6)

www.manaraa.com

41

The systematic codeC ′ is now specified using its encoding function.

Construction 2.2 Let Σ be a [κ + m,κ] linear code over the alphabetQ′ of sizeq′ =

ℓ + 1. The systematic codeC ′ over the alphabetQ of sizeq = 2(ℓ + 1)s hasκ+ ⌊m(s−
1)/s⌋ information symbols and⌈m/s⌉ parity symbols. The parity symbols are computed

by taking the moduloℓ + 1 of the information symbols, encoding them using a systematic

encoder forΣ′, and mapping the resultingm parity symbols overQ′ to ⌈m/s⌉ symbols

overQ, as described in(2.6).

Note that the length of the codeC ′ isκ+ ⌊m(s− 1)/s⌋+ ⌈m/s⌉ = κ+m, the length of

the non-systematic codeC.

Codes obtained by Construction 2.2 have the following errorcorrection capability.

Theorem 2.12 C ′ correctst asymmetricℓ-limited-magnitude errors ifΣ correctst sym-

metric errors.

Proof: The key point in the proof is that an asymmetricℓ-limited-magnitude error in

a parity symbolj of C ′ may only changeφ(j)
0 out of thes parity symbolsφ(j)

0 , . . . ,φ
(j)
s−1

of Σ′, mapped to this symbol. The wayΣ′ was extended fromΣ allows correcting errors

in the added information symbols, as long as the parity symbols whoseH columns were

replicated are guaranteed to be error free. This fact can be verified by using a decoder forΣ′

that first computes the syndrome usingH′ and then inputs this syndrome to a decoder for

Σ. Thust or less asymmetricℓ-limited-magnitude errors in any combination of information

and parity symbols will result in a correctable error for thecodeΣ′. 2

To clarify Construction 2.2 an example is now provided.

Example 2.4 Suppose we want to protect20 information bits with a systematic code that

correctst = 1 asymmetricℓ = 3 limited magnitude error, over an alphabet of sizeq = 32.

Sincet = 1 andℓ = 3, we takeΣ to be the quaternary Hamming code. More specifically,

we chooseΣ to be the[5, 3] Hamming code over the alphabet of sizeq′ = 4 whose parity-

www.manaraa.com

42

check matrix is given below.

H =




1 0 1 1 1

0 1 1 2 3





Them = 2 left columns ofH correspond to the parity symbols ofΣ. Note thatq = 2(q′)s

ands = 2.

Replicating the right parity column we obtainH′, the parity-check matrix ofΣ′.

H′ =




1 0 0 1 1 1

0 1 1 1 2 3





Encoding

The encoding of20 bits of information into a codeword of a systematic codeC ′ with the

specified parameters is described in Figure2.8. Shaded cells represent parity symbols and

unshaded cells represent information symbols. In Figure2.8(a), the top two bit rows are

used to encode a word ofΣ′ over the Finite Field of size4. In the right part of Figure2.8(b),

information bits are mapped to symbols ofQ using the usual binary to integer conversion.

In the left part, the parity symbols ofΣ′ are mapped to a symbol ofQ using the mapping

defined in equation(2.6). Figure2.8(c) shows the final codeword ofC ′.

As implied by the constant2 in equation (2.6), only half of the alphabetQ is used in

the parity symbols. That is equivalent to1 extra redundantbit for each parity symbol of

C ′. Note that the half factor is true for arbitraryℓ. Wheneverℓ > 1, that amount of addi-

tional redundancy compares favorably to using the Ahlswedeet al. “all error correcting”

scheme [AAK02] for the parity symbols, which allows using only a 1/(ℓ + 1) fraction of

the alphabetQ.

To better understand Construction 2.2, it may be beneficial to view it as a concatenated

coding scheme. The codeC ′ is a concatenation of the outer codeΣ′ and an inner code

for each symbol (the mappingQ′ ↔ Q) that partially corrects an asymmetricℓ-limited-

magnitude error, to have the outer codeΣ′ observe at most one symmetric error. Figure 2.9

illustrates this view of the systematic-code construction.

www.manaraa.com

43

(a)

(b)

(c)

00
00 0

0

0

00

000

0 0

1
1

1

1

1

1 1

1

1

2 23

814171219

H′

{

∑4i=0 ai4
iφ0 + 2φ1 · 41

φ0 φ1

Figure 2.8: Encoding of a systematic sample code witht = 1 and ℓ = 3. (a) Encoding the
top two rows using the modified quaternary Hamming code (parity symbols in shaded boxes). (b)
Mapping information bits using the standard positional mapping and mapping parity quaternary
symbols using the mapping in (2.6). (c) The resulting codeword over the alphabet of size32.

2.6 Codes for Asymmetric and Symmetric Limited-Magnitude

Errors

In Flash memory applications, a dominant error source may cause most of the errors to be

in one known direction. However, other, more secondary error sources can inject errors that

are more symmetrical in nature, but still have low magnitudes. To answer such plausible

scenarios, we address a variation of the asymmetricℓ-limited-magnitude error model to

include a (small) number ofsymmetricℓ-limited-magnitude errors.

Definition 2.4 A (t↑ , tl) asymmetric/symmetric ℓ-limited magnitude error is a vectore

such that|{i : ei 6= 0}| ≤ t↑ + tl. In addition,tl of the indices ofe satisfy−ℓ ≤ ei ≤ ℓ,

www.manaraa.com

44

s parity s parity
symbols symbols

of Σ′of Σ′
Q′→Q

1 bit
redundancy

AℓM Partial
Error

Error
Recovery

Q→Q′

Figure 2.9:Concatenated-Coding view of Construction 2.2. The mappingQ′→Q can be viewed
as an Inner code in a concatenated coding scheme in whichΣ′ is the Outer code.

and the remainingn− tl indices satisfy0 ≤ ei ≤ ℓ.

In the following, we present a construction method for codesC↑,l that correct(t↑, tl)

asymmetric/symmetricℓ-limited-magnitude errors. This enhanced error correctability is

achieved by modifying Construction 2.1 with the addition ofan auxiliary binary code and

a special mapping from information bits toq-ary symbols. We assume for simplicity that

q = 2s(ℓ + 1), for some integers.

Construction 2.3 Letσ = (σ1, . . . ,σn) be a codeword of a codeΣ, over an alphabet of

sizeℓ + 1, that correctst = t↑ + tl symmetric errors. LetV = (~v1, . . . , ~vn) be a two-

dimensional binary array of sizes× n, taken from an array codeC that corrects a single

bit error in each of at mosttl columns3. Each symbol ofx ∈ C↑,l is composed from a

symbol of the codewordσ and a bit vector of the codewordV as follows.

For anyi,

xi = (ℓ + 1) ·Gray(~vi) +σi

whereGray(~u) is the sequential number of the vector~u in a binary Gray code ons bits.

The codeC↑,l contains all|Σ| · |C| compositions of the codewords ofΣ andC.

Proposition 2.13 The codeC↑,l is a (t↑, tl) asymmetric/symmetricℓ-limited-magnitude

error-correcting code.

Proof: Decoding ofC↑,l is performed in two steps. Firstly,C↑,l is decoded as if it was

a plaint asymmetricℓ-limited-magnitude error-correcting code (of Construction 2.1). For

thetl coordinates that possibly suffered errors in the downward direction, the first decoding

3Such codes can be obtained by lengthsn, binary tl error-correcting codes, or more cleverly, using J.K
Wolf’s Tensor-Product code construction method [Wol06]

www.manaraa.com

45

step miscorrects these errors toexactlyℓ + 1 levels below their correct levels. Thus, for

each of thesetl miscorrections, the Gray mapping guarantees that the errorresulting from

this ℓ + 1 level discrepancy will be observed by the codeC as a single bit error. 2

Example 2.5 below illustrates the encoding and decoding of acode originating from

Construction 2.3.

Example 2.5 In this example we protect7 symbols over an alphabet of sizeq = 12 against

t↑ = 2 asymmetric errors plustl = 1 symmetric error. Both the asymmetric and symmet-

ric errors have magnitude limit ofℓ = 2. In Figure2.10, σ is a codeword of the ternary

repetition code that correctst↑ + tl = 3 symmetric errors. The bits ofV , placed in two

rows, are a codeword of the (shortened) binary Hamming code of length 14. Each column

of V is mapped to an integer in{0, 1, 2, 3} using the Gray code, and the final codeword

x combinesV and σ through the formula

x = 3 ·Gray(V) +σ

σ

V
Gray

x

00
0000

000
1 1

1 1

11

11

1

22

22

2222222

3

558811

Figure 2.10:Example of a code for asymmetric and symmetric limited-magnitude errors. From
top to bottom: a codewordσ of the ternary repetition code; a binary Hamming codeword arranged
into a2× 7 array and its Gray mapping; the final codewordx obtained by combiningσ andV.

Decoding of the sample code above is illustrated in Figure2.11. The codeword in (a)

is corrupted by2 asymmetric (upward) errors and1 downward error; the resulting word is

given in (b). In (c) the result of correcting3 asymmetriclimited-magnitude errors is given.

www.manaraa.com

46

The “corrected” array Ṽ is shown in (d), and the top bit of the third column from right

(marked with a bold-face0) is found to be in error. Finally, in (e) the third symbol from

right (in bold face) is adjusted3 levels upward after a miscorrection was detected at the

previous step.

(a)

(b)

(c)

(d)

(e)

codeword

corrupted

AℓM decoded

correctedṼ

SℓM adjusted

0 000

000

11 1

111

2

2

22

2 22

2

34

5

5

5

55

88

88

8

88

10

11

11

11

11

0

5

+3

Figure 2.11:Example of decoding asymmetric and symmetric limited-magnitude errors. (a) Code-
word. (b) Codeword corrupted by asymmetric and symmetric limited-magnitude errors. (c) First
decoding step: correction of asymmetric limited-magnitude (AℓM) errors. (d) Resulting corrected
codewordṼ is decoded using a Hamming decoder. (e) Adjusting the miscorrection of the symmetric
error found in the previous step.

Note that the amount of redundancy (of bothσ and V) required in the example to

correct (2, 1) asymmetric/symmetric errors is smaller than ifV is not restricted and the

repetition code is taken over an alphabet of size2ℓ + 1 = 5 (that scheme would correct3

symmetricℓ = 2 limited magnitude errors).

The counter-intuitive part of Construction 2.3 is thatbinary Gray mappings are used

regardless of the error-magnitudeℓ. This fact implies that the codesΣ andC cooperate

with each other to achieve the prescribed correction capability, otherwiseC would need to

operate over a larger alphabet forℓ > 1.

www.manaraa.com

47

2.7 Asymmetric Limited-Magnitude Error-Correcting Codes

in Flash Devices

While the majority of the results of this chapter are formulated in mathematical terms, their

great practical promise should not be overlooked. The gap between a good coding scheme

from a theoretical perspective and an attractive coding scheme in practice is deep and often

daunting – it was proved historically that improved error resilience, lower redundancy,

and even efficient decoding do not suffice to attract technology providers to implement

a coding scheme. In this section our intention is to project the coding results above, on

the design and operation of real Flash devices, thus showingtheir value for that particular

application. To do that we first show how asymmetric limited-magnitude error-correcting

codes can be deployed with minimal excess hardware over current Flash architectures. Next

we analyze, as a function ofℓ, the savings in programming time offered by asymmetricℓ-

limited-magnitude error-correcting codes.

2.7.1 Implementation architecture

The codes proposed in this chapter enjoy a key property that seems to allow a relatively

painless access to them by commercial Flash products. The fact that the error-correcting

engine of the new code constructions are codes for the symmetric channel, which are used

anyway by common Flash devices to correct memory errors, permits a simple modification

of the Flash architecture to obtain a much more targeted treatment of the observed errors.

In Figure 2.12, a simplified architecture of a typical Flash device is presented. The Flash

cell contents are measured and converted to discrete levelsusing the A/D (Analog to Digi-

tal converter) block. Then, to match the chosen error-correcting code for symmetric errors,

the discrete levels are represented in the appropriate alphabet (using the Alphabet Con-

verter) and fed to the ECC (Error-Correcting Code) decoder.The outputs of the decoder

are then delivered to the device user. By converting the cellprogrammed levels to a lower

alphabet the structure of the Flash errors is lost and cannotbe utilized by the ECC decoder.

In comparison, for the coding scheme proposed in this chapter, a similar architecture pro-

www.manaraa.com

48

vides guaranteed error control against common asymmetric limited-magnitude errors. In

Figure 2.13, the cell levels are similarly measured and converted to discrete levels. The

moduloℓ + 1 of these levels are fed to the same ECC decoder as in Figure 2.12, whose

error estimatesare now subtracted from the discrete measured levels over the full alphabet

(the subtraction is represented by the
⊕

adder blocks). The corrected symbols are then

passed to the user after a possible alphabet conversion.

A/D

ECC

DECODER

Alphabet

Converter

User

Bits

Figure 2.12:Flash architecture with symmetric error-correcting codes. The correction of errors is
performed on the low-alphabet symbols, thus not utilizing the specific characteristics of Multi-level
Flash errors.

By installing circuitry to support the modulo operation andsimple additions, the device

designer is free to choose variable ECC Decoder blocks to obtain any error correction

capability specified byt andℓ.

2.7.2 Programming speed-up

As mentioned in the introduction of this chapter, asymmetric limited-magnitude error-

correcting codes can be used to speed up the cell programmingprocess by allowing faster,

less precise programming pulse sequences. The behavior of atypical optimized Flash pro-

gramming sequence is shown in the graphs of Figure 2.14, which is taken from [BSH05].

The integers of the horizontal axis represent the program-pulse sequential numbers and the

www.manaraa.com

49

A/D

ECC

DECODER

MODULO

User

Bits

Alphabet

Converter

Figure 2.13: Proposed Flash architecture with asymmetric limited-magnitude error-correcting
codes. Here the error estimates from the decoder are subtracted from the symbols over the orig-
inal alphabet thus utilizing the error structure for targeted error correction.

vertical axis represents electric-current levels to whichFlash cells are programmed. A cir-

cle on the a graph represents a current level achieved by a pulse at some point along the

programming sequence. The different graphs in Figure 2.14 represent program sequences

with different target current values. As can be clearly seen, most of the progress toward the

target value is achieved by the early pulses, and the numerous later pulses are used for a fine

asymptotic convergence to a value very close to the target. Therefore, having even a small

error resiliency against asymmetric limited-magnitude errors can allow the programming

sequence to terminate long before hitting the target value (due to the asymptotic nature of

the programming curves) thus significantly speeding up memory access. Increasing the

error resiliency beyond the flat part of the curve does not addsignificant benefits as at the

steeper part of the curve the vertical concentration of programming points becomes sparser.

To supplement the experimental evidence above, that tolerance to asymmetric limited-

magnitude errors can speed-up the programming sequence, a quantitative analysis of the

www.manaraa.com

50

Figure 2.14:Performance of a Flash adaptive program sequence [BSH05]. The circles on each
curve describe the results of an iterative programming algorithm for a given target value.

time savings is now carried out. The inputs to a Flash programming algorithm are theinitial

andtargetcurrent levels; its output is a programming pulse of some width and amplitude,

that attempts to move closer to the target level, under some constraints. To have an analytic

description of the programming sequence, we need to model the programming algorithm

in a way that captures its main design constraints in practice. In Flash devices, preventing

over-programming, whereby the programming result exceeds the target level, is a crucial

consideration taken by the programming algorithm. The reason for that being that Flash

devices do not support single-cell erasures, and an over-programming instance requires

erasing a full Flashblock, an operation that is very costly in terms of time and device wear.

The analysis that follows, strongly builds on that propertyof Flash devices.

Suppose a Flash cell is to be programmed from a lower levelIi to a higher target levelIF.

Since the changeδ in the current level is a random variable whose distributiondepends on

the chosen programming pulse, we model it as anexponentially distributedrandom variable

www.manaraa.com

51

with mean1/µ. µ will be determined by the programming algorithm as a function of Ii, IF,

and subject to a constraint of fixing a low probability of over-programming. Specifically,µ

will be taken such that

Pr(Ii + δ > IF) = ǫ

ǫ is a global parameter that specifies the allowable probability of over-programming. Sub-

stituting the exponential distribution ofδ, we get the integral equation

∫
∞

IF−Ii
µ exp(−µδ)dδ = ǫ (2.7)

(See Figure 2.15 for illustration.)

µ

pdf(δ)

IF − Ii
ǫ

δ

Figure 2.15:Choice of a programming distribution based on the specified probability of over-
programming. For starting levelIi and target levelIF the parameterµ of the exponential distribution
is chosen such that the marked area under the probability density function graph equalsǫ (the
specified probability of over-programming)

Solving (2.7) and rearranging we get

µ = − ln(ǫ)
IF − Ii

Hence we have the following relationship between the lower level Ii and the final (higher)

level Ii+1:

Ii+1 = Ii + δi , δi ∼ Exponential[− ln(ǫ)/(IF − Ii)] (2.8)

Note that the parameter of the exponential distribution ofδi at each stepi depends on the

starting levelIi that is itself a random variable.

www.manaraa.com

52

Starting from an initial levelI0, the programming algorithm recursively updates the cell

level according to (2.8), and stops after thenth step if In ≥ IF − ∆, where∆ is the maxi-

mum allowed deviation from the target levelIF. Discussed in detail later, the parameter∆

specifies the device tolerance to programming errors in the downward direction. A pictorial

illustration of the modeled programming sequence is given in Figure 2.16.

IF
∆

I0

δ2

δ3

δn

δ1

I1

I2

I3

In−1
In

Figure 2.16:A pictorial illustration of the modeled programming sequence. On the left side are
the initial level I0, the target levelIF and the tolerance parameter∆. In the middle is a sequence of
exponentially distributed level incrementsδ1, δ2, . . . , δn resulting from the programming algorithm.
On the right side are the instantaneous levelsIi until the process terminates atIn.

To analyze the performance of the programming algorithm, weneed to find the expected

number of stepsn, such that

In−1 < IF −∆ ≤ In

However, given the complex4 structure of the random processIi, finding the mean ofn is

hard. Instead, we will approximateIi’s mean crossing time by the (deterministic) crossing

time of the mean ofIi. This latter calculation is significantly easier since we can use the

linearity of expectation to obtain a recursive formula for the mean ofIi. The accuracy of that

approximation can be established using concentration bounds (e.g. Chebyshev inequality),

however for the discussion here a first order approximation should suffice.

4Ii is a Markov process with an uncountable number of states

www.manaraa.com

53

Now taking the mean of equation (2.8) we write

Ii+1 = Ii + E

[
1

µi

]

= Ii + Kǫ(IF − Ii) (2.9)

whereKǫ , −1/ ln(ǫ). Rewriting (2.9) provides a recurrence relation on the expected

programmed levels

Ii+1 = Ii(1− Kǫ) + Kǫ IF

Solving the recurrence for initial levelI0 we get the expression

In = I0(1− Kǫ)n + IFKǫ
n

∑
i=1

(1− Kǫ)i−1

which after simplification becomes

In = IF − (1− Kǫ)n(IF − I0) (2.10)

Now, by equating (2.10) toIF − ∆ we can calculate the timeN when the sequence of

meansIn crossesIF −∆:

IF − (1− Kǫ)N(IF − I0) = IF − ∆

that gives

N =
log(IF − I0)− log(∆)

− log(1− Kǫ)
(2.11)

The importance of (2.11) is that it describes how the number of required pulsesN depends

on the error margin∆. To compare the programming speed of Flash devices with and with-

out an asymmetric limited-magnitude error-correcting code, we define two different error

margins,∆c and∆uc, respectively (the subscriptc stands forcodedand the subscriptuc

stands foruncoded, and obviously∆c > ∆uc). The difference between the corresponding

numbers of pulsesNuc andNc is then

Nuc − Nc =
log(∆c/∆uc)

− log(1− Kǫ)

www.manaraa.com

54

A conservative assumption is to set∆c = (ℓ + 1)∆uc, whereℓ is the parameter of the

asymmetricℓ-limited-magnitude error-correcting code. This assumption corresponds to

allowing the uncoded device a tolerance of one level (over the discrete alphabetQ), and

the coded device a tolerance ofℓ additional levels for the total ofℓ + 1 levels. Under that

assumption, the saving in the number of programming pulses equals

Nuc − Nc =
log(ℓ + 1)

− log(1− Kǫ)
(2.12)

For an over-programming probabilityǫ = 0.01 the above equals

Nuc − Nc = 4.08 log(ℓ + 1)

Values of savings for different values ofℓ are given in Table 2.1.

ℓ Nuc − Nc
1 2.84
2 4.48
3 5.66
4 6.57
5 7.31
6 7.94

Table 2.1: Approximate average savings in programming pulses for sample values ofℓ

Another quantity of interest is the percentage of savings(Nuc−Nc)/Nuc× 100, which

depends on the particular differenceIF − I0. For a programming window ofIF− I0 = a∆,

a is an integer specifying the target increase in discrete levels, the part of the programming

duration saved by the code equals
log(ℓ + 1)

log a
,

as long asa < q− ℓ. The median5 saving percentage is obtained by takinga = q/2 and is

equal to
log(ℓ + 1)

log(q/2)
.

5The median savings is a simple approximation to the average savings, which has an unwieldy expression.
For smallℓ (compared toq) it is a relatively good approximation.

www.manaraa.com

55

For a sample number of levelsq = 32, the median savings in programming time suggested

by the model is plotted in Figure 2.17.

1 2 3 4

20%

40%

ℓ

% Savings

Figure 2.17: Percentage of program-time savings as a function of the code’s magnitude limit
parameterℓ. Significant savings are suggested even for smallℓ and returns are diminishing for
growingℓ.

As seen in both Figure 2.17 and Table 2.1, while even smallℓ values suggest signif-

icant savings, increasingℓ beyond some point exhibits diminishing returns and does not

significantly contribute to increased savings in programming time. Note that this last qual-

itative observation is one we have already made when discussing Figure 2.14 earlier in the

sub-section. Thus both analytical and experimental evidence motivate the application of

asymmetric limited-magnitude error-correcting codes (with smallℓ), as clearly codes for

symmetric errors will not be an efficient solution for programming speed-up.

Note that while our model successfully predicts the asymptotic behavior of the pro-

gramming algorithm (through the(1− Kǫ)n sequence in (2.10)), it stops short of account-

ing for some of the properties of the curves in Figure 2.14. For example, the expression for

Nuc − Nc in (2.12) suggests that the numbers of saved pulses are independent of the ini-

tial and target levels. Whereas comparing the uppermost andmiddle curves of Figure 2.14

clearly concludes that this is not the case in practice, and implies that there may be other

constraints on the programming algorithm not included in our model. The design of real

www.manaraa.com

56

programming algorithms in the presence of asymmetric limited-magnitude error-correcting

codes is thus an interesting and promising research avenue.

2.8 Conclusions and Future Research

This chapter proposes a new coding technique that is motivated by Multi-Level Flash Mem-

ories. Defining a natural new error model has opened the way toa simple but powerful con-

struction method that enjoys good storage and implementation efficiencies. By an interplay

between symbol mappings and constraints on the full code block, several useful extensions

to the basic code construction are achieved. An attractive property of the codes herein is

that the coding parametersn, t, ℓ need not be fixed for a Flash Memory device family. After

implementing the simple circuitry to support this coding method in general (modulo and

other arithmetic operations), different code parameters can be chosen, by using varying

external coding modules for the symmetric error-correcting code. Many of the strengths

of this construction method were not explored in this chapter. When the reading resolu-

tion is larger than the code alphabet size (e.g., readers that give a real number rather than

an integer), improved decoding techniques can be readily applied usinglimited-magnitude

erasuresor other soft interpretations of the read symbols. Better systematic codes may be

obtained by observing the relationship between the limited-magnitude errors and the errors

they induce on the low-alphabet code, and then replacing thesymmetric error-correction

properties required here (which are too strong) with various Unequal Error Protection prop-

erties.

Proving the asymptotic optimality of Construction 2.1 for all values ofℓ andt lies upon

the existence of a proof to the following conjecture.

Conjecture 2.1 For anya andt, Aa(n, t) (size of largesta-ary code for symmetric errors)

and Asyma(n, t) (size of largesta-ary code for asymmetric errors) satisfy the following

equality.

lim
n→∞

1

n
loga |Aa(n, t)| = lim

n→∞

1

n
loga |Asyma(n, t)|

This was proved fora = 2 and for restrictedt if a > 2.

www.manaraa.com

57

More on the practical side, there is a need to devise optimization algorithms that “bud-

get” controlled errors to achieve maximal savings in programming time. An experimental

study on commercial standard Flash devices may also be helpful to quantify the improve-

ment in density that these codes can achieve.

www.manaraa.com

58

Chapter 3

Codes for Random and Clustered Device
Failures

Similarly to the previous chapter, this chapter shows how refined design goals, in conjunc-

tion with clever construction methods, can provide efficient coding schemes that match

more realistic characteristics and constraints of practical data-storage systems. If in the

previous chapter it was found useful to renounce thesymmetryassumption on the channel,

this time around it is thememorylessnessassumption on the channel that is shown to be

limiting and inessential. When array codes are used as abstractions of failure-protected

storage arrays, each array column represents a physical device or storage unit. The tradi-

tional MDS (Maximum Distance Separability) requirement onthe codes assumes device

failures that are uniformly distributed across the storagearray, without taking into account

the effects of the physical layout of the devices within the array. The main motivation to de-

part from the MDS model in this chapter, is the premise that device failures tend to cluster,

and therefore, a failure pattern of the form of Figure 3.1(a)is more likely than the isolated

failures of Figure 3.1(b). The main contributions of this chapter can be summarized as

follows.

• A new classification of error combinations based on the number of clusters that they

occupy.

• Construction of a family of codes with excellent Clustered-erasure correction and

good Random-erasure correction capabilities. The new codes have superior encod-

ing, decoding and update complexities compared to the best known codes for Ran-

www.manaraa.com

59

! ! !! !! !!

(a) (b)

Figure 3.1:Clustered and Non-clustered patterns of4 device failures. (a) Clustered pattern includes
two adjacent failures. (b) Non-clustered pattern has isolated failures only.

dom erasures.

• Statistical analysis of the reliability of redundant disk arrays under Random and Clus-

tered failures.

3.1 Introduction

Protecting disk arrays and other dynamic-storage systems against device failures has long

become an essential part of their design. Implemented solutions to data survivability in the

presence of failed hardware have progressed considerably in the last two decades. In the

dawn of failure-protected storage systems, relatively simple schemes were implemented. In

RAID [PGK88] arrays, a redundant disk is used to store paritybits of the information disks,

which allows recovering from any single disk failure. Simple data replication and data

striping are also commonly used to avoid data loss. Meanwhile, storage requirements are

growing rapidly and at the same time, device reliability wasreduced to control the imple-

mentation cost. Consequently, recovering from only a single failure has become inadequate

while data replication is turning infeasible. Schemes thatare based on the Reed-Solomon

codes [MS77] can recover from more failures, and with a good resiliency-redundancy trade-

off, but they require complex decoding algorithms (in either space or time) and they also

have high update complexity – many parity writes are needed for small data updates. These

shortcomings left such schemes out of reach of many storage applications.

The class of codes calledarray codes[BFvT98] addresses both issues of simple de-

www.manaraa.com

60

coding and efficient updates, while maintaining good storage efficiency. The idea behind

array codes is that the code is defined on two-dimensional arrays of bits, and encoding and

decoding operations are performed over the binary alphabet, using simple Exclusive OR

operations. An example of an array code with two parity columns that can recover from

any two column erasures is given below. The+ signs represent binary Exclusive OR oper-

ations. The three left columns contain pure information andthe two right columns contain

parity bits that are computed from the information bits as specified in the chart below.

a b c a+ b+ c a+ f + e+ c

d e f d+ e+ f d+ b+ e+ c

Like encoding, decoding is also performed using simple Exclusive OR operations. For

example, recovering the bitsa, b, d, e at the two leftmost columns is done by the following

chain of computations.

e = c+ (a+ b+ c) + (d+ e+ f) + (a+ f + e+ c) + (d+ b+ e+ c)

d = e+ f + (d+ e+ f)

a = c+ f + e+ (a+ f + e+ c)

b = c+ a+ (a+ b+ c)

It is left as an exercise to verify that any two column erasures can be recovered by the code

above. The small-write update complexity (the qualifiersmall-writeis often omitted) of an

array code is the number of parity-bit updates required for asingle information-bit update,

averaged over all the array information bits. In the sample code above, each of the bits

a, b, d, f requires2 parity-bit updates, and each ofe, c requires3 parity-bit updates. The

update complexity of that sample code is hence(4 · 2+ 2 · 3)/6 = 2.333.

In the literature of array codes a column serves as an abstraction to a disk or other physi-

cal storage unit, and column erasures represent disk failures. The sample array code consid-

ered above, belongs to an infinite family of array codes called EVENODD codes [BBBM95],

that protectp information columns against two column erasures, for any prime p (in the ex-

www.manaraa.com

61

ample we tookp = 3). The EVENODD family of codes and its relatives (e.g. [CEG+04]),

can recover from any two erasures with optimal redundancy (MDS), and enjoy simple de-

coding and fairly low update complexity. EVENODD codes for more than two erasures

exist [BBV96], but their decoding becomes more complex for growing numbers of era-

sures, and their update complexity grows as fast as2r − 1, for r correctable erasures. A

high update complexity limits the system performance as it imposes excess disk I/O oper-

ations, even if no failures occur. High update complexity also implies high wear of parity

disks whose direct consequence is the shortening of disk lifetimes.

The primary incentive to move to higher order failure resilience in disk arrays is to

combat “catastrophic” events, in which multiple disks failsimultaneously. For such events,

the assumption that device failures occur independently ofeach other is no longer true,

and many failure mechanisms cause multiple disk failures that are highly correlated. Since

adjacent disks in the array share cabling, cooling, power and mechanical stress, failure

combinations that are clustered are more likely than completely isolated multiple fail-

ures. Consequently, array codes that have excellent Clustered-failure correctability, good

Random-failure correctability, and low update complexityare desirable for high order fail-

ure protection of disk arrays.

Motivated by correlated disk failures in high-order failure events, a new classification

of erasure combinations is proposed. Each combination of column erasures will be classi-

fied by the number of erased columns, and by the number ofclustersin which the erased

columns fall. The number of clusters captures the number of “independent” failure events,

each possibly affecting multiple disks in a single cluster.This model is related to the model

of multiple bursterasure correction, however the new (and stronger) model seems to better

capture the correlated failure patterns in disk arrays, since it does not predefine thesizeof

the clusters, only their number.

This chapter pursues the first attempt to improve the performance of array codes by

prioritizing the correctable failures based on their relative locations in the array. By doing

that, we part from the abstraction of a fault tolerant storage-array as an MDS code, in the

hope to achieve a more realistic trade-off between redundancy and performance. A more

general “black box” framework to trade-off storage space and access efficiency, discussed

www.manaraa.com

62

in [HCL07], does not offer benefits comparable to the resultsherein. The main contri-

bution of this chapter is the construction of an array-code family, called RC codes (for

Random/Clustered), that corrects essentially all Clustered, and7 out of 8 non-Clustered,

4-failure combinations. The RC codes are better than EVENODD(r = 4) in all implemen-

tation complexity parameters. They improve the encoding and decoding complexities by

25% and the small-write update complexity by28.57%. They also support twice as many

disks compared to EVENODD codes, for the same column size. Tocompare RC-coded

disk arrays to EVENODD-coded ones in terms of their reliability performance, analysis of

the Mean Time To Data Loss (MTTDL), under Random and Clustered failures is carried

out.

3.2 Definitions and Notations

3.2.1 Array Codes

The definitions in this sub-section are standard coding-theory terminology that provides

a good abstraction for failure-resilient disk arrays. Alengthn array code consists ofn

columns. A column is a model for, depending on the exact application, either a whole

disk or a different physical data unit (such as a sector) in the disk array. In the codes

discussed here, there arek columns that store uncoded information bits andr columns that

store redundant parity bits (thusn = k + r). This array structure has the advantage that

information can be read off a disk directly without decoding, unless it suffered a failure,

in which case a decoding process is invoked. An array code that admits this structure is

calledstrongly systematic. A column erasureoccurs when, for some physical reason, the

contents of a particular column cannot be used by the decoder. An erasure is a model

for a device failure whereby all the data on a disk (or other physical unit) is known to

have become unusable. We say that an array with given column erasures iscorrectable

by the array code if there exists a decoding algorithm that, independent on the specific

array contents, can reconstruct the original array from unerased columns only. An array

code is called MDS (Maximum Distance Separable) if it has r redundant columns and it

www.manaraa.com

63

can correct all possible combinations ofr column erasures. MDS codes obviously have

the strongest conceivable erasure correction capability for a given redundancy, since the

k information columns can be recovered fromany k columns. Beyond space efficiency

of the code, one should also consider its I/O efficiency. I/O efficiency of a disk array is

determined by thesmall-writeandfull-columnupdate complexities of the array code used.

The small-write update complexity (often simply called update complexity) is defined as

the number of parity-bit updates required for a single information bit update, averaged over

all information bits. The full-column update complexity isthe number of parity columns

that have to be modified per a single full-column update. Another crucial performance

marker of an array code is itserasure-decoding complexity, defined as the number of bit

operations (additions, shifts) required to recover the erased columns from the surviving

ones. Unless noted otherwise,p will refer to a general prime numberp.

3.2.2 Random/Clustered erasure correction

To describe column erasure combinations whose only restriction is the number of erased

columns, it is customary to use the somewhat misleading termRandom[LC83] erasures.

Definition 3.1 An array is said to recover fromρ Random erasures if it can correct all

combinations ofρ erased columns.

The Random erasure model is most natural when storage nodes are known to, or more

commonly, assumed to behave uniformly and independent of each other. Indeed, almost

all array-code constructions discussed in the literature aim at correcting Random erasures.

Refinement of the erasure model is possible by adding restrictions on the relative locations

of the erased columns. This chapter considersClusterederasures where theρ erasures

fall into a limited (< ρ) number of clusters. We now turn to some definitions related to

the Clustered erasure model. In words, aclusteris a contiguous block of columns. More

precisely,

Definition 3.2 In an array code with columns numbered{0, 1, 2, . . . , n− 1}, a cluster is

a set ofσ columns such that the difference between the highest numbered column and the

www.manaraa.com

64

lowest numbered one is exactlyσ − 1.

For example,{2, 3, 4, 5} is a cluster withσ = 4. Now given a set of columns, the number

of clusters that it occupies is the partition of that set to a minimal number of subsets, each

of which is a cluster according to the definition above. Now weinclude another definition

that will be useful later.

Definition 3.3 A set ofρ columns is calledClustered if the number of clusters it occupies

is strictly less thanρ.

Random erasures have no restriction on their respective numbers of clusters and therefore

they include both Clustered and non-Clustered erasures. The other extreme is thecolumn

burst model where all erased columns need to fall into a single cluster. These two well-

studied extreme cases open our presentation and later the RCcodes are shown to be very

effective for all intermediate cases of Clustered erasures. An illustration of the column-

clustering definitions is given in Figure 3.2.

(a)

(b)

(c)

(d)

Figure 3.2:Classification of column combinations by their respective numbers of clusters. Four
columns (marked with X) that fall into (a) One cluster (b) Twoclusters (c) Three clusters (d) Four
clusters (non-Clustered)

www.manaraa.com

65

3.3 Preliminaries and Relevant Known Results

The purpose of this section is to discuss relevant known results in sufficient detail to prepare

for the presentation of the new RC codes in the next section. Some algebraic tools used

later for RC codes have been used before for other codes, so this section also serves to

elucidate those tools prior to their use by the actual code construction.

3.3.1 Codes for erasures in a single cluster

Assume that our design goal is a disk array that will sustain any erasure ofρ columns in a

single cluster, without requiring any Random erasure correction capability. One option is

to take a code that corrects anyρ Randomcolumn erasures that, in particular, corrects any

Clusteredρ erasures. However, as can be expected, this may not be the best approach since

correcting all Random erasures is a far stronger requirement that excludes much simpler

and more efficient constructs. As this section shows, a simple and well known technique

calledinterleavingcan achieve that task optimally both with respect to the required redun-

dancy and in terms of the code update complexity.

Let CP be an array code withn′ columns, out of whichk′ = n′ − 1 are information

columns. The remaining column holds the bit-wise parity of the k′ information columns.

Define the codeCPρ as the lengthn = ρn′ code that is obtained by the interleaving ofρ

codewords ofCP . In other words, ifC(1),C(2), . . . ,C(ρ) areρ codewords ofCP , then the

corresponding code word ofCPρ will be

C
(1)
1

C
(2)
1
· · · C

(ρ)
1 C

(1)
2

C
(2)
2
· · · C

(ρ)
2 C

(1)
3
· · ·

Proposition 3.1 The codeCPρ corrects anyρ erasures in a single cluster.

Proof: Any erasure that is confined to at mostρ consecutive columns erases at most one

column of each constituentCP code. These single erasures are correctable by the individ-

ualCP codes. 2

It is clear that the codeCPρ has optimal redundancy since it satisfiesρ = r andρ is a

well known and obvious lower bound on the redundancyr. For anyρ, the codeCPρ has

www.manaraa.com

66

update complexity (both small-write and full-column) of1, which is optimal since a lower

update complexity would imply at least one code bit that is independent of all other bits,

and erasure of that bit would not be correctable.

3.3.2 Codes for Random erasures

As mentioned in sub-section 3.3.1, array codes that correctanyρ Random erasures also

correct anyρ Clustered erasures. In this section we seek to survey a family of Random

erasure correcting codes: the EVENODD [BBBM95],[BBV96] codes. These codes en-

joy several properties that make them most appealing for implementation in disk arrays.

The purpose of presenting the codes here is twofold. First, in the absence of prior codes

that combine Clustered and Random correction capabilities, EVENODD will be used as

the current state-of-the-art for comparison with our construction. Second, the analysis of

the new RC codes herein is made simpler by building on properties previously shown for

EVENODD.

3.3.2.1 EVENODD for correcting 2 Random disk erasures

An EVENODD code [BBBM95] takesp data columns, each of sizep− 1 and adds to them

2 parity columns of the same size. The encoded array is therefore of size(p− 1)× (p+ 2).

EVENODD can correct any2 column erasures so it is clearly optimal in terms of added

redundancy (MDS). Other properties of EVENODD are that it isstrongly systematic, it has

low small-write update-complexity that is approximately one above optimal, and optimal

full-column update complexity. In addition, it can be encoded and decoded using simple

XOR and shift operations. The simplest way to define the EVENODD code is through its

encoding rules. Given a(p − 1) × p information bit array, parity columnP and parity

columnQ are filled using the rules shown in Figure 3.3, for the casep = 5. An imaginary

row, shown unshaded, is added to the array for the sake of presenting the structure of the

encoding function. Parity columnP is simply the bit-wiseevenparity of the information

columns (4 parity groups are marked using the4 different icons in Figure 3.3a). Parity

columnQ is the slope-1 diagonal parities of the information bits (whose groups are marked

www.manaraa.com

67

by icons in Figure 3.3b). Whether the parity of these diagonal groups is set to be even or

odd is decided by the parity of the information bits that lie on the diagonal that was left

blank in Figure 3.3b.

(a) (b)

P Q

Figure 3.3:Encoding of the EVENODD code. Each array of icons specifies the encoding rules for
one parity column. Each parity bit is calculated from all theinformation bits that carry the same
icon shape. (a) Horizontal parityP (b) Diagonal parityQ

3.3.2.2 Algebraic description of EVENODD

In the previous sub-section, EVENODD codes were defined using their simple encoding

functions. We now include the algebraic description of EVENODD codes from [BBBM95]

that will be most useful for later proofs in this chapter. Columns of the(p− 1)× (p+ 2)

array are viewed as polynomials of degree≤ p− 2 overF2 modulo the polynomialMp(x),

whereMp(x) = (xp + 1)/(x + 1) = xp−1 + xp−2 + · · · + x + 1 (recall that inF2

summation and subtraction are the same and both done using the boolean XOR function).

According to that view, the polynomial for a column vectorc = [c0, . . . , cp−2]T is de-

notedc(α) = cp−2αp−2+ · · ·+ c1α + c0. Bit-wise addition modulo2 of two columns is

equivalent to summing the corresponding polynomials in thering of polynomials modulo

Mp(x), denotedRp. Multiplying c(α) by α results in a downward shift ofc if cp−2 is

zero. In the casecp−2 = 1, reduction moduloMp(x) is needed andαc(α) is obtained

by first downward shifting[c0, . . . , cp−3, 0]T and then inverting all the bits of the shifted

vector. Then, it is not hard to see that the encoding rules depicted in Figure 3.3 induce the

www.manaraa.com

68

following parity check matrix overRp.

H =




1 1 · · · 1 1 0

1 α · · · αp−1 0 1





The top row ofH represents the horizontal parity constraints ofP, where all columns have

the same alignment. The bottom row represents the diagonal parity constraints ofQ, where

a column is shifted one location upwards relative to its leftneighbor. The structure of the

ringRp provides for the even/odd adjustment of theQ parities, as a function of the parity

of the bits in the blank cells. The importance of this algebraic definition of the code is due

to the fact that proving correctability of an erasure combination reduces to showing that the

determinant of a sub-matrix ofH has an inverse in the ringRp. Subsequent sections will

discuss that in more detail.

3.3.2.3 EVENODD for correcting 3 and more Random disk erasures

In [BBV96], EVENODD was generalized to codes that correctr > 2 Random erasures.

The main idea in the generalization is to add more parity columns that constrain the code

bits across diagonals with different slopes (recall that EVENODD uses slopes0 and1).

Discussing EVENODD generalization in depth is beyond the scope of this chapter. We

only mention the following facts that are relevant to our presentation.

• The asymptotic small-write update-complexity of the general EVENODD code fam-

ily is 2r− 1− o(1). o(1) refers to terms that tend to zero as the code length goes to

infinity. Their full-column update-complexity isr.

• For r > 3, generalizedr Random erasure correcting EVENODD codes are only

guaranteed to exist forp that belong to a subset of the primes: those that satisfy that

2 is a primitive element in the Galois field GF(p).

• The best known way to decode general EVENODD codes is using the algorithm

of [BR93] overRp, for which the decoding complexity is dominated by the term

rkp.

www.manaraa.com

69

3.3.3 The RingRp
Properties of the ringRp are used in subsequent sections to prove the correctabilityof era-

sure patterns by RC codes. This same ring was studied for codeanalysis in [BR93] and later

in [BBV96]. Accordingly, the purpose of this section is to summarize useful properties of

Rp, following the necessary mathematical definitions. Recallthat the elements of the ring

Rp are polynomials with binary coefficients and degree≤ p− 2. Addition is defined as the

usual polynomial addition overF2 and multiplication is taken moduloMp(x) = ∑p−1i=0 x
i.

Element f (α) is invertible in the ring if and only ifgcd(f (x),Mp(x)) = 1, where

gcd(·, ·) stands for the polynomialgreatest common divisor. If f (α) is non-invertible

(gcd(f (x),Mp(x)) 6= 1), then there exists an elementg(α) ∈ Rp such thatf (α)g(α) =

0. In that case we say thatf (α), g(α) are both divisors of0. For convenience of notation

the element∑p−2i=0 α
i is denotedαp−1. Note also thatαp = 1. The following is a useful

lemma from [BR93].

Lemma 3.2 For any primep, all elements of the formsαi andαi + 1 are invertible, for

any1 ≤ i < p.

Next a fundamental closure property of rings is worth mentioning.

Lemma 3.3 A product of invertible elements is invertible.

Lemmas 3.2 and 3.3 together provide a family of ring elementsthat are invertible for any

primep, namely products of monomials and binomials. When the primep has the property

that2 is a primitive element in GF(p), thenMp(x) is irreducible,Rp becomes afield and

consequently all non-zero elements ofRp are invertible. (See [LN86] for more details on

finite fields). Hence, for such primes, the following Lemma (Lemma 2.7 of [BBV96])

provides additional invertible elements.

Lemma 3.4 If a polynomialg(x) has an odd numbert of terms andt < p, theng(α) is

invertible inRp, providedMp(x) is irreducible.

www.manaraa.com

70

3.4 Definition of the RC Codes

3.4.1 Geometric Description

P R
1
' QR

0

Figure 3.4:The RC-code array. RC codes have2p information columns and4 parity columns. The
column size isp− 1.

Referring to Figure 3.4, the RC code has2p information columns (white) ofp− 1 bits

each and4 parity columns (shaded) with the same number of bits. The information columns

are numbered in ascending order from left to right using the integers{0, 1, 2, . . . , 2p −
1}. Parity columns are not numbered and we use letter labels forthem. The code is

defined using its encoding rules shown in Figure 3.5, for the casep = 5. As before, an

imaginary row is added to the array to show the structure of the encoding function. Each

icon represents, similarly to the definition of EVENODD in 3.3.2.1, a group of bits that are

constrained by the code to have even/odd parities. Parity columnP, located in the left most

column of the left parity section, is simply the bit-wise even parity of the2p information

columns. Parity columnR′1, located second from left, is the slope−1 diagonal parity

of the odd numbered information columns{1, 3, . . . , 2p− 1}. The bit groups ofR′1 are

set to have even parity if the bits markedEO have even parity, and odd parity otherwise.

Parity columnR0, located in the left most column of the right parity section,is the slope

2 diagonal parity of theevennumbered information columns{0, 2, . . . , 2p − 2}. Parity

columnQ, located in the right most column of the right parity section, is the XOR of

the slope1 diagonal parities of both the even numbered columns and the odd numbered

columns. The parity groups ofQ andR0, similarly to those ofR′1, are set to be even/odd,

based on the parity of the correspondingEO groups. Note that parity columnsP andQ

www.manaraa.com

71

can be decomposed intoP = P0⊕ P1 andQ = Q0⊕Q1, whereP0,Q0 depend only on

even information columns andP1,Q1 only on odd ones.

For a formal definition of the code we write the encoding functions explicitly. Denote

by ci, j the bit in locationi in information columnj. For an integerl, define〈l〉 to be l

(mod p). Now we write the explicit expression of the parity bits.

Pi =
2p−1
⊕

j=0

ci, j

R′1i = S1 ⊕
p−1
⊕

j=0

c〈i+ j〉,2 j+1 ,

where S1 =
p−1
⊕

j=0

c〈p−1+ j〉,2 j+1

R0i = S0 ⊕
p−1
⊕

j=0

c〈i−2 j〉,2 j ,

where S0 =
p−1
⊕

j=0

c〈p−1−2 j〉,2 j

Qi = SQ ⊕ (
p−1
⊕

j=0

c〈i− j〉,2 j)⊕ (
p−1
⊕

j=0

c〈i− j〉,2 j+1) ,

where SQ = (
p−1
⊕

j=0

c〈p−1− j〉,2 j)⊕ (
p−1
⊕

j=0

c〈p−1− j〉,2 j+1)

www.manaraa.com

72
P

Q

R
0

R
1
'

EO

EO

EO

EO

EO

EOEO

EOEO

EOEO

EO

EO

EO

EO

EO

Figure 3.5:Encoding of the RC code. From top to bottom: the parity groupsof parity columnsP
(slope 0),R′1 (slope -1),Q (slope 1) andR0 (slope 2). Parity columnsR0 andR′1 each depends on
only half of the columns, contributing to the low implementation complexity of RC codes.

3.4.2 Algebraic Description

Using the ringRp, the parity check matrixH of the RC code forp = 5 is given by











1 0 1 1 1 1 1 1 1 1 1 1 0 0

0 1 0 1 0 α4 0 α3 0 α2 0 α 0 0

0 0 1 0 α2 0 α4 0 α 0 α3 0 1 0

0 0 1 1 α α α2 α2 α3 α3 α4 α4 0 1











www.manaraa.com

73

The correspondence between the encoding function in Figure3.5 and the parity check

matrix above is straight forward. The columns of the parity check matrix correspond to

columns of the code array. The two left most columns are for parity columnsP andR′1
and the two right most columns are forR0 andQ. Columns in between correspond to

information columns in the array. In the parity check matrix, row 1 represents the con-

straints enforced by parity columnP, rows2, 3, 4 similarly represent the parity constraints

of R′1, R0,Q, respectively. In any rowj, the difference of exponents ofα in two different

columns is exactly the relative vertical shift of the two columns in the icon layout of the

appropriate parity in Figure 3.5. For example, in the top row, all information columns have

the same element,1(= α0), to account for the identical vertical alignment of the icons in

the encoding rule of parityP. For generalp the parity check matrixH has the following

form.

H =











1 0 1 1 · · · 1 1 1 1 · · · 1 0 0

0 1 0 1 · · · 0 α−i 0 α−(i+1) · · · α 0 0

0 0 1 0 · · · α2i 0 α2(i+1) 0 · · · 0 1 0

0 0 1 1 · · · αi αi αi+1 αi+1 · · · αp−1 0 1











(3.1)

After presenting the RC code family, we proceed in the next section to prove its Random

and Clustered erasure correction capabilities.

3.5 Erasure Correctability of RC Codes

In this section we prove that essentially all Clustered combinations of4 erasures are cor-

rectable by RC codes. Moreover, considering Random erasurecorrectability, we prove that

a7/8 portion ofall combinations of4 erasures are correctable by RC codes.

3.5.1 Clustered erasure correctability

We first prove RC codes’ excellent correction capability of Clustered erasures. This result

is established in Theorems 3.8 and 3.9 below that follow a sequence of lemmas. Recall that

the2p+ 4 columns of the RC codes are labeled{P, R′1 , 0, 1, . . . , 2p− 2, 2p− 1, R0,Q}.

www.manaraa.com

74

Lemma 3.5 For any primep, for a combination of4 erasures, if3 columns are either even

numbered information columns or parity columns in{R0 , P,Q}, and1 column is an odd

numbered information column or the parity columnR′1, then it is a correctable4-erasure.

The complement case,3 odd (orR′1 or P or Q) and1 even (orR0), is correctable as well.

(in particular, any 3-erasure is correctable).

Proof: The RC code can correct the erasure patterns under consideration using a two-

step procedure. The first step is to recover the erased odd information column. Since only

one odd column is erased, parity columnR′1 can be used to easily recover all of its bits.

Then, when all odd columns are available,P1 andQ1 are computed, and used to findP0

andQ0 from P andQ (if not erased) by

P0 = P1⊕ P , Q0 = Q1⊕Q

After that step, between even information columns,R0, P0 andQ0, only 3 columns are

missing. Since even columns,R0, P0 andQ0 constitute an EVENODD code withr = 3,

the3missing columns can be recovered. The complement case of3 odd and1 even column

erasures is settled by observing that odd columns,R′1, P1 andQ1 constitute anr = 3MDS

code [HX05]. 2

The next Lemma presents the key property that gives RC codes their favorable Random

and Clustered erasure correctability.

Lemma 3.6 For any primep such thatp > 5 and2 is primitive in GF(p), for a combina-

tion of4 erasures, if2 columns are even numbered information columns and2 columns are

odd numbered information columns, then it is a correctable4-erasure.

Proof: For the case of2 even and2 odd information column erasures we consider two

erasure patterns. All possible erasure combinations of that kind are either covered by these

patterns directly or are equivalent to them in a way discussed below. The discussion of each

erasure pattern will commence with its representing diagram. In these diagrams, a column

marked0 represents an even column and a column marked1 represents an odd column.

Between each pair of columns, an expression for the number ofcolumns that separate them

www.manaraa.com

75

is given .

a) Erasures of the form

0 ← 2 j → 1 ← 2(k− 1)→ 0 ← 2l → 1

The variablesj, k, l satisfy the following conditions:1 ≤ k , 1 ≤ j+ k+ l ≤ p− 1.
The location of the first even erased column, together withj, k, l determine the loca-

tions of the4 erasures. Any even cyclic shift of the diagram above does notchange the

correctability of the erasure pattern since this shift gives the same sub-matrix of the parity-

check matrix, up to a non-zero multiplicative constant. Hence, we can assume, without

loss of generality, that the first even erased column is located in the leftmost information

column. To prove the correctability of this erasure patternwe examine the determinant

(overRp) of the square sub-matrix ofH, that corresponds to the erased columns. This

determinant is itself an element ofRp and if it is provablyinvertible in Rp, for everyp

that satisfies the conditions of the lemma, then the erasure combination is correctable by

the RC code.

The sub-matrix that corresponds to the erasure pattern above is

M(j,k,l)
a =











1 1 1 1

0 α− j 0 α− j−k−l

1 0 α2(j+k) 0

1 α j α j+k α j+k+l











.

www.manaraa.com

76

Evaluating the determinant of this matrix gives

∣
∣
∣M(j,k,l)

a

∣
∣
∣ = α2 j+3k+l +α2 j+k−l +α j+2k+α j+k−l +

+αk+l +αk +α−l +α−k−l

= α−l(α j+k+ 1)(αk+l + 1) ·

·(α j+k+l +α j+αl + 1+α−k)

The first three factors in the product are invertible for any legal j, k, l and any primep by

Lemma 3.2. The last factor is invertible for allj, k, l and anyp > 5 such that2 is primitive

in GF(p), by Lemma 3.4. Furthermore, forp = 5, checking all possible assignments of

j, k, l and verifying that the last factor does not equalM5(x), we conclude that this pattern

is correctable forp = 5 as well.

b) Erasures of the form

0 ← 2 j− 1→ 0 ← 2k→ 1 ← 2l − 1→ 1

The variablesj, k, l satisfy the following conditions:1 ≤ j , 1 ≤ l , 1 ≤ j + k + l ≤
p− 1.

Here, like in the previous pattern, we assume, without loss of generality, that the first

even erased column is located in the leftmost information column.

The sub-matrix that corresponds to the erasure pattern above is

M(j,k,l)
b =











1 1 1 1

0 0 α− j−k α− j−k−l

1 α2 j 0 0

1 α j α j+k α j+k+l











.

www.manaraa.com

77

Evaluating the determinant of this matrix gives

∣
∣
∣M(j,k,l)

b

∣
∣
∣ = α2 j+l +α2 j−l +α j−k+α j−k−l +

+αl +α−l +α−k+α−k−l

= (α j + 1)(αl + 1)(α j +α j−l + 1+α−l +α−k−l)

The first two factors in the product are invertible for any legal j, k, l and any primep by

Lemma 3.2. The last factor is invertible for allj, k, l and anyp > 5 such that2 is primitive

in GF(p), by Lemma 3.4. 2

The next Lemma treats additional erasure combinations thatinclude parity columns and

that are not covered by Lemma 3.5.

Lemma 3.7 For any primep such thatp > 3 and2 is primitive in GF(p), the following

4-erasure combinations are correctable:

1. R′1, 1 odd information column and2 even information columns

2. R0, 1 even information column and2 odd information columns

3. R0,R′1, 1 even information column and1 odd information column, except pairs of

information columns numbered2i, 2i+ 1, respectively, for1 ≤ i ≤ p.

Proof: The sub-matrix that corresponds to case 1 is, up to a multiplicative non-zero

constant,

M(j,k)
1 =











1 1 1 0

0 α− j 0 1

1 0 α2(j+k) 0

1 α j α j+k 0











.

The variablesj, k satisfy the following conditions:1 ≤ k , 1 ≤ j+ k ≤ p− 1. Evaluating

the determinant of this matrix gives

∣
∣
∣M(j,k)

1

∣
∣
∣ = α j(α j+k+ 1)(α j+k +αk + 1),

www.manaraa.com

78

an invertible element ifp > 3.

The sub-matrix that corresponds to case 2 is, up to a multiplicative non-zero constant,

M(j,k)
2 =











1 1 1 0

0 α− j α− j−k 0

1 0 0 1

1 α j α j+k 0











.

The variablesj, k satisfy the following conditions:1 ≤ k , 1 ≤ j + k ≤ p − 1. The

determinant now equals

∣
∣
∣M(j,k)

2

∣
∣
∣ = α− j−k(αk + 1)(α j+k +α j+ 1),

an invertible element ifp > 3.

The sub-matrix that corresponds to case 3 is, up to a multiplicative non-zero constant,

M(j)
3 =











1 1 0 0

0 α− j 1 0

1 0 0 1

1 α j 0 0











,

whose determinant equals

∣
∣
∣M(j)

3

∣
∣
∣ = α j+ 1,

an invertible element ifp > 3 and if j > 0. The latter condition is equivalent to requiring

that the even and the odd information columns are not numbered 2i, 2i + 1, respectively,

for 1 ≤ i ≤ p. 2

Finally, we are ready to prove the main result of this sub-section. RC codes are next

shown to correct all 4-erasures in up to two clusters, and almost all 4-erasures in three

clusters. Given the Lemmas above, establishing these results is rather straightforward.

www.manaraa.com

79

Theorem 3.8 For any primep such thatp > 3 and 2 is primitive in GF(p), RC codes

correct all 4-erasures that fall into at most two clusters.

Proof: If a 4-erasure falls into two or less clusters, then it eitherhas2 even and2 odd

columns or3 even and1 odd columns (or the complement). IfP or Q is erased, then the

remaining3 columns cannot be all odd or all even. Lemmas 3.5, 3.6 and 3.7 address all

such combinations, except the two special cases{R′1, 2, 3, R0} and{R′1, 2p, 2p+ 1, R0}.
These combinations can be addressed by internal reorderingof even information columns

in a way that does not affect any of the other proved properties of the code. Also note that

here we only requiredp > 3, compared top > 5 in Lemma 3.6, since the only 4-erasure

that gives a non-invertible determinant ofMb for p = 5 falls into three clusters (see the

proof of Lemma 3.6). 2

Theorem 3.9 For any primep such thatp > 5 and 2 is primitive in GF(p), the ratio

between the number of RC-correctable4-erasures that fall into three clusters and the total

number of4-erasures with three clusters is greater than0.9696. Asp goes to infinity, this

ratio tends to1.

Proof: A 4-erasure with three clusters has two clusters of size1 and one cluster of size

2. If a 4-erasure falls into three clusters, then it either has2 even and2 odd columns

or 3 even and1 odd columns (or the complement). Lemmas 3.5, 3.6 and 3.7 address

all such combinations, except the following special cases.{R′1 , 2i, 2i + 1, R0} cannot be

corrected as it is not covered by case 3) of Lemma 3.7. Also,{P, R′1 , 2i + 1, 2 j+ 1} and

{2i, 2 j, R0 ,Q} cannot be corrected as they are excluded from Lemma 3.5.

Hence the number of non-correctable 4-erasures with three clusters is

p+ 2

(
p

2

)

The total number of 4-erasures with three clusters is

3

(
2p− 1
3

)

www.manaraa.com

80

(in general this equals3(n−33) for lengthn arrays since by taking any choice of3 points

on a lengthn− 3 line, we can uniquely obtain an erasure combination with three clusters,

following the procedure below. We first choose3 points from then − 3 line to be the

cluster locations. Then the point that represents the cluster with size2 is selected from

these3 points (for that we have the factor3). Given these choices, the 3 clusters are

obtained by augmenting the size2 cluster with an additional point to its right and in addition

augmenting each of the two left points with a point to its right as a cluster spacer.)

Thus the ratio between the number of correctable such 4-erasures and the total number

of such 4-erasures equals

3(2p−13)− p− 2(p2)
3(2p−13)

= 1− p2

4p3 − 12p2 + 11p− 3

= 1− 9

8p− 12 −
1

8p− 4 +
1

p− 1 .

For p = 11, the ratio attains its minimal value of0.9696. Moreover, it is readily seen that

this ratio equals1− o(1), while o(1) are terms that tend to zero asp goes to infinity. 2

3.5.2 Random erasure correctability

RC codes are next shown to correct a7/8 portion of all combinations of4 erasures.

Theorem 3.10 For any primep such thatp > 5 and 2 is primitive in GF(p), the ratio

between the number of RC-correctable4-erasures and the total number of4-erasures is

greater than0.865. Asp goes to infinity, this ratio tends to7/8 = 0.875.

Proof: Building on Lemmas 3.5, 3.6 and 3.7, the number of correctable 4-erasures equals

(1)
︷ ︸︸ ︷

2

(
p+ 3

3

)

(p+ 1)− (p+ 1)2 +

(2)
︷ ︸︸ ︷(
p

2

)(
p

2

)

+ 2p

(
p

2

)

︸ ︷︷ ︸

(3)

+ p(p− 1)
︸ ︷︷ ︸

(4)

www.manaraa.com

81

(1), obtained by Lemma 3.5, is the number of ways to select3 even information columns

(or R0 or P or Q) and1 odd information column (orR′1), multiplied by2 to include the

complement case, and subtracting the doubly counted combinations with bothP andQ.

(2), obtained by Lemma 3.6, is the number of ways to select2 even and2 odd informa-

tion columns.

(3), obtained by 1) and 2) of Lemma 3.7, is the number of ways toselect2 even infor-

mation columns and1 odd information column, multiplied by2 to include the complement

case.

(4), obtained by 3) of Lemma 3.7, is the number of ways to select an even information

column2i and an odd information column which is not2i+ 1.

The total number of 4-erasure combinations is

(
2p+ 4

4

)

Taking the ratio of the two we obtain

7p4 + 34p3 + 59p2 + 32p+ 12

8p4 + 40p3 + 70p2 + 50p+ 12

For p = 11, the ratio attains its minimal value of0.865. Moreover, it is readily seen that

this ratio equals7/8− o(1), while o(1) are terms that tend to zero asp goes to infinity. 2

3.6 Efficient Decoding of Erasures

In the previous section, the decodability of Clustered and Random erasures was proved by

algebraic reasoning. In this section we take a more constructive path and study simple and

efficient ways to decode Random and Clustered erasures. The purpose of this analysis is to

prove that decoding the RC code can be done using3kp+ o(p2) bit operations, while the

best known algorithm for a 4-erasure correcting MDS code is4kp+ o(p2) [BR93]. Since

k is taken to be in the order ofp, saving aboutkp bit operations gives a quadratic (inp)

savings in computations that is very significant in practicefor largep.

www.manaraa.com

82

For the sake of the analysis, we only consider erasure of 4informationcolumns since

these are the most common and most challenging cases. We moreover only consider era-

sures of two even columns and two odd columns, since for RC codes, the three even and

one odd case (or three odd and one even), reduces to a correction of three even (or odd)

erasures, preceded by a simple parity completion for the single odd (or even) column era-

sure. A very simple and efficient decoder for three odd-column erasures can be obtained

by using the decoder of the STAR code, given in [HX05], and a same-complexity modifi-

cation of that decoder can be used for the case of three even-column erasures. Throughout

the section we will assume that one of the erased columns is the leftmost even information

column, as all other cases are cyclically equivalent.

3.6.1 Description of 4-erasure decoding algorithm

A general 4-erasure can be decoded using a straightforward procedure overRp. Ways

to perform the steps of that procedure in an efficient way are the topic of the next sub-

section. The erased symbols, which represent the content ofthe erased array columns, are

denoted by{e1, o1, e2, o2}. e1, e2 have even locations ando1, o2 have odd locations. First

the syndrome vectors of the array is calculated by taking the product

s = Hr

wherer is the length2p+ 4 column vector overRp that represents the array contents, with

erased columns set to the zero element. Then the erased columns can be directly recovered

by










e1

o1

e2

o2











= E−1s (3.2)

www.manaraa.com

83

whereE denotes the4 × 4 sub-matrix ofH that corresponds to the 4 erased columns’

locations:

E =











1 1 1 1

0 α−11 0 α−13
1 0 α22 0

1 α1 α2 α3











.

Recall from (3.1) that eachαi is an element inRp of the formαli, for some0 < li < p.

Therefore,E can be written as

E =











1 1 1 1

0 α−u 0 α−w

1 0 α2v 0

1 αu αv αw











.

The inverse ofE, which is used in (3.2) to decode erasures, is now given in a closed form

E−1 =
(
αu +αv +αw+αu+v+αv+w

)−1 ·











1+αv 0 0 0

0 αu +αw 0 0

0 0 1+αv 0

0 0 0 αu +αw











−1

·

·











α2v(αu +αw) αu+2v+w αu +αv +αw α2v

αu+v αu+w(αv +αw +αv+w) αu αu(1+αv)

αu +αw αu+w 1+αu +αw 1

αv+w αu+w(αu +αv +αu+v) αw αw(1+αv)











From (3.2) and the closed-form expression above, the erasedsymbole1 can be recovered

by the following product

e1 =
[(
αu +αv +αw+αu+v+αv+w

)
· (1+αv)

]−1 ·

·
[

α2v(αu +αw), αu+2v+w, αu +αv +αw, α2v
]

· s

www.manaraa.com

84

Oncee1 is known,e2 can be recovered using a simple parity completion with the aid of

parity columnR0. The bits of the odd columns are then recovered by a chain of XOR

operations with the aid of parity columnsP,Q, that can now be adjusted toP1,Q1 when

all even columns are known.

Calculatinge1 then reduces to the following chain of calculations

1. Finding the inverse of(αu +αv +αw+αu+v+αv+w) (1+αv) overRp.

2. Multiplication of sparseRp elements by denseRp elements. The sparse elements

are the four elements from theE matrix (that have a small (≤ 3) constant number

of non-zero monomials, for anyp) and the dense elements are the four syndrome

elements.

3. Multiplication of two denseRp elements resulting from the previous steps.

3.6.2 Analysis of 4-erasure decoding algorithm

We now analyze the number of bit operations required for eachdecoding task.

1. Finding inverses ofRp elements:

The inverse of an elementf (α) ∈ Rp is the element̃f (α) that satisfies̃f (x) f (x) +

a(x)Mp(x) = 1, for some polynomiala(x). When f (α) is invertible, the poly-

nomial f̃ (x) can be found by the Extended Euclid Algorithm for finding the great-

est common divisor of the polynomialsf (x) andMp(x). An efficient algorithm

for polynomial greatest common divisors is given in [AHU74,Ch.8] that requires

O(p log4 p) bit operations (O(log p) polynomial multiplications, each takingO(p log3 p)

bit operations, as shown in item 3 below).

2. Multiplication of a sparse Rp element by a denseRp elementrequiresO(p) bit

operations. Since the number of non-zero monomials in the sparse polynomial is

constant inp, the trivial polynomial multiplication algorithm requires O(p) shifts

and additions modulo2.

www.manaraa.com

85

3. Multiplication of two denseRp elementscan be done inO(p log3 p) bit operations

using Fourier domain polynomial multiplication. We describe this procedure for the

special case of polynomial coefficients over GF(2). LetN ≥ 2p− 2 be the smallest

such integer of the formN = 2ℓ − 1. Letω be a principalNth root of unity in the

finite field GF(2ℓ). Thenω defines a Discrete Fourier Transform on lengthN vectors

over GF(2ℓ). The product of two polynomials of degreep− 2 or less can be obtained

by element-wise multiplication of their individual Discrete Fourier Transforms, and

then applying the Inverse Discrete Fourier Transform to theresulting lengthN vector.

Using the FFT algorithm, each transformation requiresO(N log N) operations over

GF(2ℓ), or O(N log3 N) bit operations. The element-wise multiplication requires

N multiplications over GF(2ℓ), or O(N log2 N) bit operations. SinceN < 4p,

the total number of bit operations needed for multiplying two denseRp elements is

O(p log3 p).

3.7 Reliability Analysis of RC-code Protected Disk Arrays

The main motivation for the construction of array codes in general, and RC codes in par-

ticular, is to provide efficient protection for disk arrays against device failures. The benefit

of deploying an array code in a practical storage system obviously lies in the trade-off

it achieves between erasure correction capability and implementation complexity. To this

end, the correction capability characterization of RC codes, and their benefits in implemen-

tation complexity were derived in concrete terms that can beclearly specified to the storage-

system operator. However, to achieve an effective data protection using those codes, one

needs to instill these specifications into a statistical framework for analyzing thereliability

of the stored data. For a time instancet, the reliability of a disk array is defined as the

probability that no data has been lost at timet [Gib92]. Finding the full reliability distri-

bution for all timest is hard except for very simple protection structures. Therefore, the

expectedtime before data loss, denotedMTTDL (Mean Time To Data Loss), is used in

practice as a quantitative indicator for the system reliability. Ultimately, this section will

detail a procedure to find theMTTDL of RC-code protected disk arrays in the presence of

www.manaraa.com

86

Random and Clustered device failures. This will be done after first presenting the general

method ofMTTDL calculation as applied in the literature to MDS codes under Random

failures.

3.7.1 MTTDL calculation for MDS codes under Random failures

Using the method presented in [Gib92, Ch.5] for single-erasure-correcting arrays under

Random failures (termedIndependent disk lifetimestherein), we calculate theMTTDL of

all-4-erasure-correcting arrays as an example that will belater used for comparison with

RC codes. The direct calculation of theMTTDL becomes a simpler task if disk failures

and repairs follow a Markov process and can thus be describedby Markov state diagram.

To allow that, the following assumptions are made.

• Disk lifetimes follow an exponential distribution with equal mean1 MTTFdisk =

1/λ.

• Repair times are also exponential with meanMTTRdisk = 1/µ.

• The number of disks is large compared to the number of tolerable failures so the

transition probabilities between states do not depend on the instantaneous number of

failed disks.

When those assumptions are met, the reliability of a disk array can be described by the

state diagram shown in Figure 3.6. The label of each state represents the number of failed

0 1 2 3 4 F

nλnλnλnλ

nλ

µµµµ

Figure 3.6: State diagram description of all-4-erasure correcting arrays under Random failures.
The failure process with ratenλ moves to a higher failure state. The repair process with rateµ

moves to a lower failure state.

1MTTF stands for Mean Time To Failure while MTTR stands for Mean Time To Repair

www.manaraa.com

87

disks. StateF (Fail) represents permanent data loss resulting from a failure count that is

above the array tolerance. The exponential distributions allow specifying the transitions

between states in terms ofrates. The transition rate from lower to higher states is the

inverseMTTFdisk of individual disks, times the number of disks in the array. The reverse

transitions that represent repairs have rates that are the inverseMTTRdisk assumed in the

system. Using the state diagram, theMTTDL is the expected time beginning in state0

and ending on the transition into stateF.

MTTDL , E[0→ F]

The Markov property of the process permits the decomposition

E[0 → F] = E[time stays in 0] + E[1 → F] =
1

nλ
+ E[1 → F]

Linear relationships betweenE[i → F] andE[j → F] are induced whenever statei and

statej are connected. TheMTTDL is then obtained as the solution (forE[0 → F]) of the

following linear system.














1 −1 0 0 0

− µ
µ+nλ 1 − nλ

µ+nλ 0 0

0 − µ
µ+nλ 1 − nλ

µ+nλ 0

0 0 − µ
µ+nλ 1 − nλ

µ+nλ

0 0 0 − µ
µ+nλ 1



























E[0 → F]
E[1 → F]
E[2 → F]
E[3 → F]
E[4 → F]














=














1
nλ

1
µ+nλ

1
µ+nλ

1
µ+nλ

1
µ+nλ














that is found to be

MTTDLMDS4 =
1

Λ5
(5Λ4 + 4µΛ3 + 3µ2Λ2 + 2µ3Λ+ µ4)

whereΛ , nλ was used for notational convenience.

www.manaraa.com

88

3.7.2 MTTDL calculation for RC codes under Random and Clustered

failures

For the model of Random failures, theMTTDL of RC codes can be calculated by a

straightforward application of the method in the previous sub-section – executed on the

transition diagram of Figure 3.7.

0 1 2 3 4 F
Λ

ΛΛΛ

µµµµ

Λ/8

7Λ/8

Figure 3.7:State diagram description of RC-coded arrays under Random failures. Since an RC
code corrects only a7/8 ratio of 4-erasures, the failure rate out of state3 is split to two rates with
different terminal states.

The corresponding linear system of equations on the5 active states0, 1, 2, 3, 4 is














1 −1 0 0 0

− µ
µ+Λ 1 − Λ

µ+Λ 0 0

0 − µ
µ+Λ 1 − Λ

µ+Λ 0

0 0 − µ
µ+Λ 1 − 78 · Λ

µ+Λ

0 0 0 − µ
µ+Λ 1



























E[0→ F]
E[1→ F]
E[2→ F]
E[3→ F]
E[4→ F]














=














1
Λ

1
µ+Λ

1
µ+Λ

1
µ+Λ

1
µ+Λ














The solution of that system gives

MTTDLRC,random =
39Λ4 + 35µΛ3 + 26µ2Λ2 + 17µ3Λ+ 8µ4

8Λ5 +µΛ4

The exactMTTDL calculations are now used to compare the reliability of RC codes to the

reliabilities of all-4-erasure and all-3-erasure correcting codes. For the comparison,Λ is

fixed to be100/8760[1/hr], which applies e.g. to an array with100 disks andMTTFdisk =

1[Year]. TheMTTDL in hours ([hr]) is then calculated for repair ratesµ between0.01[1/hr]

www.manaraa.com

89

and10[1/hr]. The graph shows that RC codes outperform 3-Random failure codes by an order

106

108

1010

1012

1014

2 4 6 8

all-3

RC

all-4

µ [1/hr]

MTTDL [hr]

Figure 3.8:MTTDL curves under Random failures for RC codes, all-3-erasure and all-4-erasure
correcting codes. Under Random failures, RC codes are orderof magnitude better than all-3-erasure
correcting codes, and two orders of magnitude inferior to all-4-erasure correcting codes.

of magnitude, despite having the same encoding complexity,the same update complexity

and asymptotically the same decoding complexity. However,when Random failures only

is assumed, RC codes are still two orders of magnitude below 4-Random failure-correcting

codes.

To compare RC codes and 4-Random failure codes in the presence of both Random

and Clustered codes, the state diagram of RC codes in Figure 3.7 needs to be modified

to comprise additional states that represent Clustered failures. The state diagram of 4-

Random failure codes in Figure 3.6 remains the same since this code is oblivious to the

distinction between Random and Clustered failures. To takeClustered failures into account

in the Markov failure model, we add the following assumptions to those of the previous

sub-section.

• Times to Clustered failures (failures that are adjacent to an unrepaired previous fail-

ure) are exponentially distributed with mean1/χ.

www.manaraa.com

90

• The exponentially distributed repair process eliminates isolated failures before Clus-

tered ones.

With these assumptions, the state diagram of RC-code-protected arrays with Random and

Clustered failures is given in Figure 3.9. States2′,3′ and4′ in the upper branch represent

0 1 2 3 4 F

2′ 3′ 4′

Λ+ χ

Λ+ χΛ+ χ

Λ+ χ

Λ+ χ

Λ Λ

χ χ χ

µ
µ µ

µµµµ

Λ/8

7Λ/8

Figure 3.9:State diagram description of RC-coded arrays under Random and Clustered failures.
A new failure process with rateχ introduces Clustered failures.

2, 3 and4 Clustered (not all-isolated) failures, respectively. Thetransitions marked withχ

represent moving from all-isolated failures to a Clusteredfailure combination. At the upper

branch, both Random and additional Clustered failures result in Clustered failure combina-

tions – and that accounts for the transitions markedΛ+ χ. From state0 a Clustered failure

is not well defined, but the rateχ is added to the transition to maintain consistency with

respect to the total failure rate (Λ+ χ) outgoing from all other states.

Solving the8 × 8 linear system for the diagram in Figure 3.9, theMTTDL can be cal-

culated in closed form for all combinations ofχ,Λ,µ. This ability to have a closed form

expression for theMTTDL of RC codes, under both Random and Clustered failures, is

crucial for a system operator to predict the reliability of the storage array under more real-

istic failure assumptions. The resultingMTTDL curves for RC codes under three different

χ values are plotted in Figure 3.10, and compared to theMTTDL of a 4-Random failure

code under the same conditions (4-Random codes give the sameMTTDL independent of

www.manaraa.com

91

the ratio betweenχ andΛ, as long as their sum is fixed). Not surprisingly, the curves of

Figure 3.10 prove that as Clustered failures become more dominant, the reliability of RC

codes is approaching the reliability of a 4-Random failure-correcting code.

1010

1012

1014

2 4 6 8

χ = 0

χ = Λ

χ = 2Λ

all-4

µ [1/hr]

MTTDL [hr]

Figure 3.10:MTTDL curves under Random and Clustered failures for RC codes and all-4-erasure
correcting code. For three values ofχ, theMTTDL of RC codes is shown by the solid curves. The
MTTDL of an all-4-erasure correcting code is the same for all values ofχ.

3.8 Code Evaluation and Comparison with Existing Schemes

We compare RC codes to EVENODD (r = 4) codes using various performance criteria.

The failure-correction properties in Table 3.1 apply for any primep such that2 is primitive

in GF(p).

The redundancyr is 4 for both codes. RC codes can support up to2p information

columns while EVENODD can only have up top. Since parity columnsR0 andR′1 each

depends on half of the information columns, the encoding complexity of RC codes is3kp,

compared to4kp in EVENODD. In both cases, whenk is of the same order ofp, the

decoding complexity is dominated by syndrome calculations(for RC codes this has been

shown in Section 3.6). Therefore, similarly to the encodingcase, RC codes need about3kp

www.manaraa.com

92

RC Codes 4-EVENODD
Code Length (up to) 2p p

Redundancy 4 4
Encoding Complexity 3kp 4kp
Decoding Complexity 3kp 4kp
Update Complexity 5 7
Clustered Failures ∼ All All
Random Failures 7/8 All

Table 3.1: Comparison of RC Codes and EVENODD Codes

bit operations to decode, compared to4kp for EVENODD. As for the update-complexity,

RC codes are significantly more efficient. Their small-writeupdate complexity is5. Each

of the 2p(p − 1) updated information bits needs3 parity updates,P,Q, R0 for bits in

even columns andP,Q, R′1 for bits in odd columns. The4(p− 1) bits that belong toEO

diagonals (2(p− 1) in Q andp− 1 in each ofR0, R′1) require additionalp− 1 parity-bit

updates each for adjusting even/odd parities. The small-write update-complexity of RC is

then obtained by averaging

6p(p− 1) + 4(p− 1)2
2p(p− 1) = 5− o(1)

Recall that EVENODD has small-write update-complexity of2r− 1− o(1) = 7− o(1).
The full-column update-complexity of RC is3 while EVENODD’s is4. Thus RC offers a

28.57% improvement in the average number of small-writes and25% improvement in the

number of full-column updates. The fraction of Clustered erasures correctable by RC codes

is 1 − o(1), essentially the same as EVENODD’s1 fraction. Only in Random erasure-

correction capability are RC codes slightly inferior to EVENODD codes, the fraction of

correctable Random erasures is7/8− o(1) compared to1 for EVENODD.

3.9 Discussion

The key idea in the construction of the family of RC codes, is to find a “good” “cooperating

interleaving” of two codes. By “cooperating interleaving”we mean that some of the code

parity bits are computed from only one constituent code, butother parity bits are computed

www.manaraa.com

93

from both codes. By “good” we mean that all4-erasure combinations, except those that fall

exclusively on one constituent code, will be correctable bythe code. For the particular case

addressed by RC codes, the challenge was to simultaneously correct both combinations

of (3 even/odd,1 odd/even) column failuresand combinations of (2 even,2 odd) column

failures. Both are needed to cover all cases of Clustered failures. In that respect, Pyramid

codes [HCL07] use “cooperating interleaving” in their construction. Nevertheless, these

interleavings are not “good” in the sense that there are manymore uncorrectable erasures

beyond what allowed by the definition of “good” above.

A central contribution of this chapter is the classificationof column sets by the number

of clusters they occupy, and the use of that classification toanalyze the correctability of

Clustered4-erasures. Admittedly, that classification is much more general than its context

here. From a coding theoretic perspective, a rich variety oferror models can be defined

based on that abstract classification. It is an interesting open problem, one with great

practical promise, whether a general theory of Clustered error correction can be found, that

includes both general code constructions and tight upper bounds.

www.manaraa.com

94

Chapter 4

Cyclic Lowest-Density MDS Array
Codes

It is when practical motivations meet mathematical beauty that a research area becomes

attractive and vibrant. Many areas of Coding Theory have flourished thanks to their in-

triguing links to frontiers of deep mathematics. When questions about code properties

translate to the most fundamental combinatorial or algebraic problems, the code designer

is humbled by the increased load that is adjoined to his attempts. In the area of array

codes, the problem with the clearest reflections in mathematics, and with simultaneously

a great practical appeal, is the construction oflowest-densityMDS codes. This chapter

adds new results, to the handful of previously known ones, byconstructing codes that are

lowest-density, MDS, and alsocyclic, thus offering better codes in the practical sense and

improved understanding of the underlying combinatorial entities. The main contributions

of the chapter are summarized below.

• Definition of a new class of array codes:systematically-cyclicarray codes.

• Construction of three new families of lowest-density, systematically-cyclic, MDS

array codes.

• Description of the complexity benefits systematically-cyclic codes offer to practical

storage systems.

The results of this chapter appear in [CB06] and [CB07].

www.manaraa.com

95

4.1 Introduction

MDS (Maximum Distance Separable) codes over large symbol alphabets are ubiquitous

in data storage applications. Being MDS, they offer the maximum protection against de-

vice failures for a given amount of redundancy. Array codes,as mentioned in the previous

chapter, are one type of such codes that are very useful in dynamic high-speed storage sys-

tems, as they enjoy low-complexity decoding algorithms, aswell as low update complexity

when small changes are applied to the stored content. That isin contrast to the family of

Reed-Solomon codes [MS77, Ch.10] that in general has none ofthese favorable properties.

A particular array-code sub-class of interest islowest densityarray codes, those that

have the smallest possible update complexity for their parameters. Since the update com-

plexity dictates the access time to the storage array, even in the absence of failures, this

parameter of the code is the primary limiting factor of the code implementation in enter-

prise storage systems. Examples of constructions that yield lowest-density array codes

can be found in [ZZS81],[XBBW99],[XB99],[LR06],[BR99]. In this chapter we propose

lowest-density codes that are alsocyclic or quasi-cyclic. Adding regularity in the form of

cyclic symmetry to lowest-density MDS array codes makes their implementation simpler

and potentially less costly. The benefit of the cyclic symmetry becomes especially signifi-

cant when the code is implemented in a distributed way on distinct network nodes. In that

case, the use of cyclic codes allows a uniform design of the storage nodes and the interfaces

between nodes. The code constructions additionally offer atheoretical value by unveiling

more of the rich structure of lowest-density MDS array codes.

As an example, we examine the following code defined on a2× 6 array. The+ signs

represent the binary Exclusive-OR operation. This code has6 information bitsa0, . . . , a5,

+ ++ ++ ++ ++ ++ +

a0

a0a0a0

a1

a1a1a1

a2

a2a2a2

a3

a3a3a3

a4

a4a4a4

a5

a5a5a5

and6 parity bits a2 + a3 + a4 , a3 + a4 + a5, a4 + a5 + a0, a5 + a0 + a1 , a0 + a1 +

a2, a1 + a2 + a3. It is easy to see that all6 information bits can be recovered fromany

set of 3 columns. For example, if we want to recovera3 , a4, a5 from the bits of the3

www.manaraa.com

96

left columns, we can proceed bya3 = (a3 + a4 + a5) + (a4 + a5 + a0) + a0, thena4 =

a2+(a2+ a3+ a4)+ a3, and finallya5 = (a3+ a4+ a5)+ a3+ a4. Since3 columns have

6 bits in total, the code is Maximum Distance Separable (MDS).Additionally, the code has

lowest-density, since updating an information bit requires3 parity updates – a trivial lower

bound for a code that recovers from any3 erasures. However, the focus of this chapter is

a different property of this sample code: its cyclicity. To convince oneself that the code is

cyclic, we observe that all the indices in a column can be obtained by adding one (modulo

6) to the indices in the column to its (cyclic) left. Thus any shift of the information bits row

results in an identical shift in the parity bits row (and hence the code is closed under cyclic

shifts of its columns).

The sample code above, as well as all the codes constructed inthe chapter, belong to

a sub-class of cyclic array codes:systematically-cyclic array codes. Section 4.3 contains

characterizations of cyclic array codes in general and systematically-cyclic codes (first de-

fined here), in particular. Codes in the systematically-cyclic sub-class enjoy greater im-

plementation benefits relative to the general class of cyclic codes. Properties of cyclic and

systematically-cyclic array codes that imply simpler implementation are provided in sec-

tion 4.6. In particular, these properties manifest simplerupdates and encoding, and more

efficient erasure and error decoding.

array dimensions r notes
κ1◦ (p− 1)/2 × (p− 1) 2
κ2◦ (p− 1)/r × (p− 1) 3,4 2 primitive in GF(p)
κ3◦ (p− 1) × 2(p− 1) 2 2-quasi-cyclic

Table 4.1: Summary of cyclic code constructions

In sections 4.4 and 4.5, three families of lowest-density, systematically-cyclic (or systematically-

quasi-cyclic) MDS array codes are constructed. The families are namedκ1◦, κ2◦ andκ3◦,

respectively (the◦ qualifier designates a cyclic or quasi-cyclic code), and their properties

are summarized in Table 4.1 above. For all primesp, κ1◦ provides systematically-cyclic

codes on arrays with dimensions(p − 1)/2 × (p − 1) and redundancyr = 2, over any

Abelian group. For all primesp, such thatr|p− 1 and2 is primitive in GF(p), κ2◦, which

is a generalization ofκ1◦, provides systematically-cyclic codes on arrays with dimensions

www.manaraa.com

97

(p − 1)/r × (p − 1) and redundancyr = 3, 4, over fields of characteristic2. κ2◦ is the

first known family of cyclic lowest density MDS array codes with r > 2. Finally, for

all primes p, κ3◦ provides systematically-quasi-cyclic codes on arrays with dimensions

(p − 1) × 2(p − 1), over any Abelian group. A specific instance of the familyκi◦ is

denotedκi◦(p), for some primep. Cyclic codes with the same parameters asκ1◦ were

proposed in [ZZS81], but these are not systematically-cyclic and therefore enjoy only part

of the propertiesκ1◦ have. Non-cyclic codes with the same parameters asκ2◦ are given

in [LR06]. In addition, the existence of codes with the same parameters asκ1◦ andκ3◦

was shown in [XBBW99]. However, using the suggested combinatorial construction tools

of [XBBW99] gives non-cyclic codes.

The construction technique we use is first constructing non-cyclic lowest-density MDS

codes, and then explicitly providing a transformation to their parity check matrices that re-

sults in new, non-equivalent, cyclic codes with the same minimum distance and density. For

easier reading, a construction of a sample code precedes thegeneral construction method

in section 4.4 while the construction of section 4.5 works anexample after each step.

4.2 Definitions

A linear array codeC of dimensionsb× n over a fieldF = GF(q) is a linear subspace

of the vector spaceFnb. The dual codeC⊥ is the null-space ofC over F. To define the

minimum distance of an array code we regard it as a code over the alphabetFb, where

Fb denotes lengthb vectors overF. Then the minimum distance is simply the minimum

Hamming distance of the lengthn code overFb. Note that though the code symbols can be

regarded as elements in the finite field GF(qb), we do not assume linearity over this field.

C can be specified by either its parity-check matrixH of sizeNp × nb or its generator

matrix G of size(nb − Np) × nb, both overF. An arrayS of sizeb × n is a codeword

of C if the lengthnb column vectorσ , obtained by taking the bits ofS column after col-

umn, satisfiesHσ = 0, where0 is the lengthNp all-zero column vector. From practical

considerations, array codes are required to besystematic, namely to have a parity-check (or

generator) matrix that is systematic, as now defined.

www.manaraa.com

98

Definition 4.1 A parity-check (or generator) matrix is called [weakly]systematic if it has

Np (or nb− Np), not necessarily adjacent, columns that when stacked together form the

identity matrix of orderNp (or nb− Np), respectively.

Given a systematicH matrix orG matrix (one can be easily obtained from the other), the

nb symbols of theb × n array can be partitioned intoNp parity symbols andnb − Np
information symbols. Define thedensityof the code as the average number of non-zeros in

a row ofG: N(G)
nb−Np , whereN(M) is the number of non-zeros in a matrixM. WhenH is

systematic, an alternative expression for the density is1+
N(H)−Np
nb−Np . The codes proposed

in this chapter, all have the lowest possible density, as defined below.

Definition 4.2 A codeC is calledlowest density if its density equals its minimum distance.

(the minimum distance is an obvious lower bound on the density [BR99]). If b|Np and the

minimum distanced equals
Np
b + 1, then the code is called Maximum Distance Separable

(MDS) with redundancyr =
Np
b .

Throughout the chapter[s, t] denotes the set{x ∈ Z : s ≤ x ≤ t}. To simplify the

presentation of the constructions in the chapter, we introduce another structure that defines

a code when, as is the situation here, the parity check matrixhas elements in{0, 1}.

Definition 4.3 Given a parity check matrixH of a codeC, define theindex array AC to be

a b× n array of subsets of[0,Np − 1]. The set in locationi, j of AC contains the elements

{x : hi+b j(x) = 1}, wherehl denotes thelth column ofH and hl(x) denotes thexth

element ofhl, x ∈ [0,Np − 1]

Each set inAC represents a column ofH. If H is systematic,AC hasNp sets of size1,

called singletons. Note thatAC has the same dimensions as the code array. As an example

we take a (n = 6, b = 3,Np = 6) systematic code and provide in Figure 4.1 a generator

matrixG and a parity check matrixH with its index arrayAC .

www.manaraa.com

99

G =
























0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
























←−−−−−−−
n
b−
N
p −−−−−−−→

←−−−−−−−−−−− nb −−−−−−−−−−−→

H =











1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0











←−−−
N
p −−−→

AC =
0 1 2 3 4 5

4, 5 5, 0 0, 1 1, 2 2, 3 3, 4

1, 3 2, 4 3, 5 4, 0 5, 1 0, 2

←−
b−→

←−−−−−−−−− n −−−−−−−−−→

Figure 4.1:G,H and the index arrayAC for a samplen = 6, b = 3,Np = 6 codeC. Each set of
AC specifies the locations of the ones in a single column ofH.

4.3 Cyclic Array Codes

The codes constructed in this chapter are codes of lengthn overFb which are cyclic butnot

linear (though theyareusually linear overF). In this section we wish to discuss such codes

in general, providing conditions for a code to be cyclic. Oneway to characterize cyclic

array codes is as cyclic group codes over the direct-productgroup of the additive group of

F. Another is to view them as lengthnb linear b-quasi-cycliccodes. For the most part,

the latter view will prove more useful since the constructions in the chapter are not explicit

group theoretic ones. In fact, the description of array codes using index arrays we chose

here was used in [TW67] to describe quasi-cyclic code constructions. We start off with the

basic definition of cyclic codes.

www.manaraa.com

100

Definition 4.4 The codeC overFb is cyclic if

s = (s0, s1, . . . , sn−2, sn−1) ∈ C

⇒ s′ = (s1, s2, . . . , sn−1, s0) ∈ C

andsi ∈ Fb.

Cyclic codes overFb are related to quasi-cyclic codes overF in the following manner.

Proposition 4.1 An array codeC of lengthn overFb is cyclic if and only if the codeC1D
of lengthnb overF, that has the same parity check matrix, is quasi-cyclic withbasic block

lengthb.

This equivalence allows us to use the characterization of quasi-cyclic codes from [PW72,

pp.257], to determine the cyclicity of an array code.

Theorem 4.2 A codeC on b× n arrays andNp = ρn, ρ an integer, is cyclic if it has a

parity check matrix of the form

H =











Q0 Q1 . . . Qn−1

Qn−1 Q0 . . . Qn−2
...

...
...

Q1 Q2 . . . Q0











whereQi are arbitrary matrices of sizeρ× b.

Note that ifH is not required to have full rank ofρn, then Theorem 4.2 captures the most

general cyclic array codes (theif statement can be replaced with anif and only if one.).

However, there exist cyclic array codes that do not have fullrank matricesH, of the form

given above. For example,H =




1 0 1 0

0 1 0 1



 has the following words as codewords







0 0

0 0
,
1 1

0 0
,
0 0

1 1
,
1 1

1 1







www.manaraa.com

101

and hence it is cyclic. However, there is no2× 4 parity check matrix for this code that

admits the structure of




Q0 Q1

Q1 Q0



.

A sub-class of the cyclic codes characterized above,systematically-cyclic array codes, is

next defined. These are cyclic array codes in which each column hasρ parity symbols, at

the same locations for all columns.

Definition 4.5 A codeC on b× n arrays andNp = ρn, ρ an integer, issystematically-

cyclic if it has a parity check matrix of the form

H =











IP0 OP1 . . . OPn−1

OPn−1 IP0 . . . OPn−2
...

...
...

OP1 OP2 . . . IP0











whereI andO represent, respectively, the identity and all-zero matrices of orderρ. Pi are

arbitrary matrices of sizeρ× (b− ρ).

An equivalent characterization can be obtained using the index arrayAC of the codeC.

Corollary 4.3 to Theorem 4.2 and Definition 4.6 provide this characterization.

Corollary 4.3 A codeC on b× n arrays andNp = ρn, ρ an integer, is cyclic if it has an

index array representationAC , in which addingρ to all set elements moduloρn results in

a cyclic shift ofAC .

Definition 4.6 A codeC on b × n arrays andNp = ρn, ρ an integer, is systematically-

cyclic if it has an index array representationAC , in whichNp of the sets are singletons and

addingρ to all set elements moduloρn results in a cyclic shift ofAC .

www.manaraa.com

102

4.4 κ1◦,κ2◦: Cyclic Lowest-Density MDS codes with

n = p− 1, b = p−1
r

The constructions of the code families in this chapter specify the index arrays of codes

with dimensions parametrized by a primep. For two of the code families –κ1◦,κ2◦, the

construction uses abstract properties of Finite Fields to obtain index-array sets that guar-

antee cyclic lowest-density MDS codes for all code dimensions. To better understand the

construction method ofκ1◦,κ2◦, the general construction is preceded by the construction

of one particular instance of the family:κ1◦(7).

κ1◦(7) is a cyclic MDS array code with dimensionsb = 3, n = 6 and redundancy

r = 2. In the finite field with7 elements GF(7),1 pickα = 6, an element of multiplicative

orderr = 2. Pickβ = 3, an element with multiplicative orderp− 1 = 6. Usingα andβ,

GF(7) is partitioned into the following setsCi.

C−1 = {0} , C0 = {β0,β0α} = {1, 6},

C1 = {β1,β1α} = {3, 4} , C2 = {β2,β2α} = {2, 5}

The elements of the setsC−1,C1,C2 (C0 is discarded since it contains the elementp− 1 =

6) are permuted by the permutation[0, 1, 2, 3, 4, 5]
ψ̄→ [0, 2, 1, 4, 5, 3] and the correspond-

ing setsD j now follow.

D0 = ψ̄(C−1) = {0} ,

D1 = ψ̄(C1) = {4, 5} , D2 = ψ̄(C2) = {1, 3}

The setsD0,D1,D2 define the first column of the index array ofκ1◦(7). Each of the other

5 columns is obtained by adding1 modulo6 to the elements of the sets in the column to its

1GF(p) used for the code construction should not be confused withF, the code alphabet

www.manaraa.com

103

left. The final index array of the codeκ1◦(7) is now given.

Aκ1◦(7) =

0 1 2 3 4 5

4, 5 5, 0 0, 1 1, 2 2, 3 3, 4

1, 3 2, 4 3, 5 4, 0 5, 1 0, 2

.

It is left as an exercise to verify thatκ1◦(7) is cyclic, lowest-density and MDS.

We now provide the general construction of the code familiesκ1◦,κ2◦.

Let r be a divisor ofp− 1, andp an odd prime. Letα be an element in GF(p) of order

r andβ be an element in GF(p) of order p − 1. The order of an elementx in GF(p) is

defined as the smallest non-zero integeri such thatxi = 1 (mod p). α andβ define a

partition of GF(p) to p−1r + 1 sets. These sets are thep−1r cosets of the multiplicative

subgroup of orderr of GF(p), plus a set that contains only the zero element. Except for

the zero set, all sets are of cardinalityr.

C−1 = {0} Ci = {βi,βiα, . . . ,βiαr−1} (4.1)

where0 ≤ i < p−1
r . The setsCi are used in [LR06] to construct (non-cyclic) lowest density

MDS codes with redundancyr = 3, 4. The same construction, only withr = 2, provides

(non-cyclic) lowest density MDS codes by applying the perfect 1-factorization of com-

plete graphs withp+ 1 vertices by Anderson [And73], to the construction of [XBBW99].

Shortened versions of the non-cyclic constructions of [XBBW99] and [LR06] are used in

the proofs of the constructions of this chapter, and are denotedκ1 andκ2, respectively. As

shown by [LR06],κ2 provides lowest density MDS codes for a wide range of parameters.

WhenF has characteristic2, MDS codes are obtained forr = 3 andr = 4, whenever2 is

primitive in GF(p). For larger characteristics, codes with additionalr values were shown

to be MDS. Forr = 2,κ1 provides MDS codes over any Abelian group [XBBW99].

Sinceκ1◦,κ2◦ follow the same construction (only with differentr), in the forthcom-

ing discussion we treat them as one family (denotedκ1◦,2◦). Following the presentation

of theκ1◦,2◦ construction, we explicitly present the construction for the non-cyclic MDS

codesκ1,2. This is done for the benefit of proving the MDS property ofκ1◦,2◦ - through a

www.manaraa.com

104

minimum-distance preserving transformation from the parity-check matrix ofκ1,2 to that

of κ1◦,2◦.

Better readability in mind and with a slight abuse of notation, operations on sets denote

element-wise operations on the elements of the sets. Specifically, if 〈x + l〉z is used to

denotex+ l (mod z), then〈S+ l〉z denotes the set that is obtained by addingl to the el-

ements ofS moduloz. Similarly, permutations and arithmetic operations on sets represent

the corresponding operations on their elements.

We now turn to show how the setsCi of equation (4.1) are used to construct the cyclic

lowest-density MDS codesκ1◦,κ2◦. DefineI0 = {i : ∀x ∈ Ci , 0 ≤ x < p− 1}. I0 is the

set of all indicesi, except for the unique indexi′ for whichCi′ contains the elementp− 1.
Clearly |I0| = p−1

r . Denote thejth element ofI0 by I0(j), j ∈ [0,
p−1
r − 1], where indices

in I0 are ordered lexicographically. The permutationψ : [0, p− 2]→ [0, p− 2] is defined

to beψ(x) = βx − 1 (mod p). We also define the inverse ofψ, ψ̄(y) = logβ(y+ 1).

The constructing setsD j are now defined usingCi and the permutationψ.

D j = ψ̄(CI0(j)), for j ∈ [0,
p− 1
r
− 1].

The construction ofκ1◦,2◦ is now provided by specification of the index arrayAκ1◦,2◦.

In Aκ1◦,2◦, the set at location

(j, l) ∈ [0,
p− 1
r
− 1]× [0, p− 2]

is
〈D j + l〉p−1.

The codesκ1◦,2◦ are systematically-cyclic by Definition 4.6 since the top row (j = 0)

contains sets of size1, and for everyl, translations of the same setsD j are taken.

As for the codesκ1,2, for every0 ≤ m < p− 1 defineIm = {i : ∀x ∈ 〈Ci+m〉p , 0 ≤
x < p− 1} (Im is the set of all indicesi, except for the unique indexi′ for which〈Ci+m〉p
contains the elementp − 1). It is obvious that for everym, |Im| =

p−1
r since for every

translationm of the setsCi, only one set contains the elementp− 1. Denote thejth element

www.manaraa.com

105

of Im by Im(j), j ∈ [0,
p−1
r − 1], where indices inIm are ordered lexicographically. The

codeκ1,2 is defined via an index arrayAκ1,2.

In Aκ1,2, the set at location

(j,m) ∈ [0,
p− 1
r
− 1]× [0, p− 2]

is

〈Ci +m〉p , i = Im(j).

Note that because of the restrictioni ∈ Im,κ1,2 providesnon-cyclic codes.

The known MDS property ofκ1,2 is next used to prove the MDS property ofκ1◦,2◦.

Theorem 4.4 κ1◦,2◦ andκ1,2 have the same redundancy, minimum distance and density.

Proof: We explicitly show an invertible transformation fromAκ1◦,2◦ to Aκ1,2 that pre-

serves the code redundancy, density, and minimum distance.To refer to an elementx in

the set at location(j, l) in an index arrayAC , we use the tuple(x, j, l, C). The aforemen-

tioned transformation is given by showing thatAκ1,2 is obtained fromAκ1◦,2◦ by a mapping

(x, j, l,κ1◦,2◦) ↔ (ψ(x), j′ ,m,κ1,2). The mappingx ↔ ψ(x) represents permuting the

rows of the parity check matrix and the mapping(j, l) ↔ (j′ ,m) represents permuting

columns of the parity check matrix (which for array codes, ingeneral, does not preserve

the minimum distance). As will soon be proved, the mapping(j, l) ↔ (j′,m) has a spe-

cial property that it only reorders columns of the index array and reorders setswithin its

columns (m is a function ofl, independent ofj, andj′ is a function of bothj, l.). Hence, all

operations preserve the redundancy of the code, its minimumdistance and its density. More

concretely, we need to show that for everyl ∈ [0, p− 2] there exists anm ∈ [0, p− 2]
such that everyj has a correspondingt = Im(j′) that together satisfy

ψ[〈D j + l〉p−1] = 〈Ct +m〉p

Since〈D0 + l〉p−1 consists of the single elementl and〈C−1 +m〉p consists of the single

elementm, the integersl andm have to satisfym = ψ(l). Then, for the remainder of the

www.manaraa.com

106

sets (j > 0), we rewrite the above condition as

ψ[〈D j + l〉p−1] = 〈Ct +ψ(l)〉p

Definei = I0(j), we can now prove the above statement

ψ[〈D j + l〉p−1] = ψ[〈ψ̄[Ci] + l〉p−1] =

〈βlogβ(〈Ci+1〉p−1)+l − 1〉p = 〈βlCi +βl − 1〉p =

〈C〈i+l〉 p−1
r

+ψ(l)〉p

and the required transformation is

(x, j, l,κ1◦,2◦) ↔ (ψ(x), j′ ,ψ(l),κ1,2), where j′ satisfiesIψ(l)(j
′) = 〈I0(j) + l〉(p−1)/r

for j > 0, and j′ = j = 0 for j = 0.

2

4.4.1 Example:κ1◦(7) revisited – the transformation from κ1(7)

To constructκ1(7), the sets

C−1 = {0}, C0 = {1, 6}, C1 = {3, 4}, C2 = {2, 5}

are used by taking the sets〈Ci +m〉7 to be the sets ofAκ1(7) in columnm, leaving out the

particular set in that column that contains the element6.

Aκ1(7) =

0 1 2 3 4 5

3, 4 2, 0 3, 1 4, 2 5, 3 1, 2

2, 5 4, 5 4, 0 5, 1 0, 1 0, 3

www.manaraa.com

107

The permutationsψ andψ̄ written explicitly are[0, 1, 2, 3, 4, 5]
ψ→ [0, 2, 1, 5, 3, 4] and

[0, 1, 2, 3, 4, 5]
ψ̄→ [0, 2, 1, 4, 5, 3]. ψ̄ acting on the arrayAκ1(7) yields

ψ̄(Aκ1(7)) =

0 2 1 4 5 3

4, 5 1, 0 4, 2 5, 1 3, 4 2, 1

1, 3 5, 3 5, 0 3, 2 0, 2 0, 4

which after reordering of columns and sets within columns results in the systematically-

cyclic codeκ1◦(7).

Aκ1◦(7) =

0 1 2 3 4 5

4, 5 5, 0 0, 1 1, 2 2, 3 3, 4

1, 3 2, 4 3, 5 4, 0 5, 1 0, 2

4.5 κ3◦: Quasi-Cyclic Lowest-Density MDS Codes with

n = 2(p− 1), b = p− 1, r = 2
Before constructing the 2-quasi-cyclic codeκ3◦, we discuss quasi-cyclic array codes in

general. The definitions and characterizations provided for cyclic array codes in section 4.3

can be generalized to quasi-cyclic array codes.

Definition 4.7 The codeC overFb is T-quasi-cyclic if

s = (s0, s1, . . . , sn−2, sn−1) ∈ C

⇒ s′ = (sT , sT+1, . . . , sn−1, s0, . . . , sT−1) ∈ C

andsi ∈ Fb.

A generalization of Theorem 4.2 to quasi-cyclic array codesis now provided.

Theorem 4.5 A codeC on b × n arrays andNp = ρn, ρ an integer, isT-quasi-cyclic

www.manaraa.com

108

(n = λT) if it has a parity check matrix of the form

H =











Q0 Q1 . . . Qλ−1

Qλ−1 Q0 . . . Qλ−2
...

...
...

Q1 Q2 . . . Q0











whereQi are arbitrary matrices of sizeTρ× Tb.

Systematically-quasi-cyclic codes are now defined throughtheir index arrays as a general-

ization of systematically-cyclic codes defined in Definition 4.6.

Definition 4.8 A codeC on b× n arrays andNp = ρn, ρ an integer, issystematically-

T-quasi-cyclic if it has an index array representationAC , in which Np of the sets are

singletons and addingTρ to all set elements moduloρn, results in aT-cyclic shift ofAC .

4.5.1 Construction of theκ3◦ codes

The codeκ3◦ is defined over arrays of size(p− 1)× 2(p− 1). Since it is a systematically

quasi-cyclic code (T = 2), we denote theNp = 2(p − 1) parity constraints in the index

arrayAκ3◦ by a0 , b0, a1, b1, . . . , ap−2, bp−2. Then = 2(p− 1) columns of the array will

be marked by the same labels. The construction to follow, specifies the contents of “a

columns” (al) and “b columns” (bl) of Aκ3◦ separately.

Let p be an odd prime andβ be a primitive element in GF(p). The permutationψ :

[0, p− 2]→ [0, p− 2] is defined, as in section 4.4, to beψ(x) = βx − 1 (mod p). The

inverse permutation̄ψ is thenψ̄(y) = logβ(y+ 1). For any permutationφ, we useφ(ai)

andφ(bi) to denote, respectively,aφ(i) andbφ(i). Also ai + l,bi + l are used forai+l,bi+l,

respectively, and[as, at],[bs, bt] are used for{as , as+1, . . . , at} and{bs, bs+1, . . . , bt}, re-

spectively.

www.manaraa.com

109

4.5.1.1 a Columns

Define the setsΓi, i ∈ [0, p− 2] to be

Γi =
{

ai , b〈i−1〉p
}

(4.2)

Define the sets∆ j, j ∈ [1, p− 2] to be

∆ j =
{

ψ̄(a j), ψ̄(b〈 j−1〉p)
}

(4.3)

Thea columns ofAκ3◦ are now defined. The set in location(0, al), al ∈ [a0 , ap−2] is {al}
and the set in location(j, al) ∈ [1, p− 2]× [a0 , ap−2] is 〈∆ j + l〉p−1.

As an example we write thea columns ofAκ3◦(5). For p = 5 the setsΓi are

Γ0 = {a0, b4}, Γ1 = {a1 , b0}, Γ2 = {a2 , b1}, Γ3 = {a3 , b2}

Forβ = 2, the permutation̄ψ is [0, 1, 2, 3]
ψ̄→ [0, 1, 3, 2]. The sets∆ j, defined through the

permutationψ̄, are

∆1 = {a1 , b0}, ∆2 = {a3, b1}, ∆3 = {a2 , b3}

Finally, thea columns ofAκ3◦(5) are provided.

a0 a1 a2 a3

a1, b0 a2 , b1 a3 , b2 a0 , b3

a3, b1 a0 , b2 a1 , b3 a2 , b0

a2, b3 a3 , b0 a0 , b1 a1 , b2

www.manaraa.com

110

4.5.1.2 b Columns

Define the followingp sets

{b0, bp−1}, {b1, bp−2}, . . . , {b(p−3)/2, b(p+1)/2}

{a0, ap−1}, {a1 , ap−2}, . . . , {a(p−3)/2, a(p+1)/2}

, {a(p−1)/2, b(p−1)/2}.

The indices of every set sum top− 1. From the sets above define the followingp− 1 sets

{ b0 }, {b1 , bp−2}, . . . , {b(p−3)/2, b(p+1)/2}

, {a1 , ap−2}, . . . , {a(p−3)/2, a(p+1)/2}

, {a(p−1)/2, b(p−1)/2}.

The elementbp−1 was removed from the set{b0, bp−1} and the set{a0, ap−1} was re-

moved altogether. After modifying the sets listed above, the resulting sets contain distinct

elements from the sets[a0, ap−2] and[b0, bp−2]. The sets∇0, . . . ,∇p−2 are obtained by

permuting the sets above usingψ̄,

{ψ̄(b0)}, {ψ̄(b1), ψ̄(bp−2)}, . . . , {ψ̄(b(p−3)/2), ψ̄(b(p+1)/2)}

, {ψ̄(a1), ψ̄(ap−2)}, . . . , {ψ̄(a(p−3)/2), ψ̄(a(p+1)/2)}

, {ψ̄(a(p−1)/2), ψ̄(b(p−1)/2)}.

Theb columns ofAκ3◦ are now defined. The set in location(j, bl) ∈ [0, p− 2]× [b0 , bp−2]

is 〈∇ j + l〉p−1.
As an example we write theb columns ofAκ3◦(5). For p = 5, the p− 1 sets, before

www.manaraa.com

111

operating theψ̄ permutation are

{ b0 }, {b1, b3}

, {a1 , a3}

, {a2 , b2}.

After applying theψ̄ permutation, the sets∇0,∇1,∇2,∇3 are obtained

{ b0 }, {b1, b2}

, {a1 , a2}

, {a3 , b3}.

Finally, theb columns ofAκ3◦(5) are provided.

b0 b1 b2 b3

b1, b2 b2, b3 b3, b0 b0, b1

a1 , a2 a2 , a3 a3, a0 a0 , a1

a3, b3 a0 , b0 a1, b1 a2, b2

By mapping the indices(a0 , b0, . . . , ap−2, bp−2) to the integer indices(0, 1, . . . , 2p−
3), the codeκ3◦ clearly satisfies the requirements of Definition 4.8, hence

Proposition 4.6 The codeκ3◦ is systematically2-quasi-cyclic.

The rest of this section is devoted to proving thatκ3◦ is an MDS code.

4.5.2 Proof of the MDS property

To prove the MDS property of the codesκ3◦, a two step proof will be carried out. First

we define a different, non-quasi-cyclic codeκ3, and show that it is MDS. Then we show a

distance preserving mapping from the rows and columns of theparity-check matrix ofκ3

to those ofκ3◦. κ3 is now defined. The definition only specifies the sets of each column of

www.manaraa.com

112

Aκ3 , without specifying the set locations within a column. Thisdefinition suffices for the

MDS proof and for the mapping provided later. The array dimensions and code parameters

of κ3 are identical to those ofκ3◦ .

Definition 4.9 The columnsa0, b0, a1, b1, . . . , ap−2, bp−2 of the codeκ3 are defined as

follows.

1) An a columnal ∈ [a0 , ap−2] of Aκ3 contains the set{al} and all sets{am, bm′} such that

m−m′ = l+ 1 (mod p). Only thep− 2 such sets with(m,m′) ∈ [0, p− 2]× [0, p− 2]
are taken.

2) A b columnbl ∈ [b0, bp−2] of Aκ3 contains the set{bl}, the set{a(l−1)/2, b(l−1)/2}, and

all sets{am, am′} and{bm, bm′} such thatm+m′ = l − 1 (mod p). Here too, only the

p− 3 sets with(m,m′) ∈ [0, p− 2]× [0, p− 2] are taken.

To prove the MDS property ofκ3, we define and use a graphical interpretation of index

arrays. This interpretation can be applied when the index array AC , of a binary parity-

check matrix, has only sets of sizes two or less. Given an index array whose union of sets

is {0, 1, . . . ,R− 1}, denote byKR+1 the complete graph on the R+ 1 vertices labeled

{0, 1, . . . ,R− 1,∞}. Each set of size two,{x, y}, defines a subgraph ofKR+1, called

set-subgraph, that has the verticesx, y and an edge connecting them. Each set of size one,

{x}, defines a set-subgraph ofKR+1 that has the verticesx,∞ and an edge connecting

them. A bit2 assignment to an array corresponds to the union of set-subgraphs in locations

with non-zero entries. The following is a simple but useful observation.

Proposition 4.7 A bit assignment to an array is a codeword ofC if and only if all vertices

have even degrees in itsAC set-subgraph union (the subgraph is a cycle or a union of

edge-disjoint cycles, with possibly some isolated vertices).

The above graphical interpretation is now explained with anexample.

2A similar interpretation works for array symbols from any Abelian group

www.manaraa.com

113

Example 4.1 Let the array codeC be defined by the following index array.

AC =

0 1 2 3 4 5

4, 5 5, 0 0, 1 1, 2 2, 3 3, 4

1, 3 2, 4 3, 5 4, 0 5, 1 0, 2

The word

V1 =

1 0 1 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

has the set-subgraph union in Figure4.2(a). Vertices4, 5 have odd degrees of1, and thus

the wordV1 is not a codeword ofC. On the other hand, the word

V2 =

0 1 0 1 0 0

0 1 1 0 0 0

1 0 0 0 1 0

has the set-subgraph union in Figure4.2(b). All vertices have even degrees and thusV2 is

a codeword ofC.

0 0

1 1

2 23 3

4 4

5 5

∞ ∞

(a) (b)

Figure 4.2:Set-subgraph unions of the codeC. (a) For the wordV1. (b) For the codewordV2.

The next Lemma establishes the MDS property ofκ3 by showing that there are no code-

words of column weight smaller than3.

www.manaraa.com

114

Lemma 4.8 For any two columns from{a0 , b0, a1, b1, . . . , ap−2, bp−2}, there are no non-

zero codewords ofκ3 that are all zero outside these two columns.

Proof: For each pair of columns, the proof will show that no subgraphof the set subgraph

corresponding to these two columns, can contain a cycle. Hence there are no non-zero

codewords with column weight2 or less. We distinguish between three cases. A similar

proof, but for a different combinatorial construct (which does not yield quasi-cyclic codes)

appears in [And73].

Case 1:Two a columns contain all non-zero locations.

For columnsal andal+v such that0 ≤ l < l + v ≤ p− 2, the set-subgraph is given in

Figure 4.3. A solid edge comes from a set in columnal and a dashed edge comes from a

set in columnal+v. Note that the edges satisfy the constraints of 1 in Definition 4.9. To

∞

al b−v−1 al−v b−2v−1 al−2v b−tv−1

al+v bv−1 al+2v b2v−1 al+3v bsv−1

Figure 4.3:Set-subgraph of columnsal,al+v. Solid edges represent sets from columnal whose
indices have differencel + 1. Dashed edges represent sets from columnal+v whose indices have
differencel + v+ 1. Having a cycle as a subgraph implies eitherl − tv ≡ l + sv (mod p) (an a
vertex shared by top and bottom branches) or−tv− 1 ≡ sv− 1 (mod p) (a b vertex shared by
top and bottom branches). Each results in a contradiction.

have a cycle as a subgraph, there must exist two integerss, t such thats+ t < p and either

l − tv ≡ l + sv (mod p) or−tv− 1 ≡ sv− 1 (mod p). The first condition refers to

the case when an index ofa from the upper chain is identical to an index ofa from the

lower chain (and thus a cycle is created). The second condition refers to the case when an

index ofb from the upper chain is identical to an index ofb from the lower chain. Each of

the conditions requires(s+ t)v ≡ 0 (mod p), which is a contradiction for a primep.

Case 2:Two b columns contain all non-zero locations.

For columnsbl andbl+v such that0 ≤ l < l + v ≤ p − 2, the set-subgraph is given in

Figure 4.4. The edges satisfy the constraints of 2 in Definition 4.9. Cycles with an odd

number of edges are not possible since elements appear at most once in every column (any

www.manaraa.com

115

∞

∞

or

or

bl bv−1 bl−v b2v−1 bl−2v b

al av−1 al−v a2v−1 al−2v a

bl+v b−v−1 bl+2v b−2v−1 bl+3v b

al+v a−v−1 al+2v a−2v−1 al+3v a

Figure 4.4:Set-subgraph of columnsbl,bl+v. Solid edges represent sets from columnbl whose
indices sum tol− 1. Dashed edges represent sets from columnbl+v whose indices sum tol+ v− 1.
Having a cycle as a subgraph implies eitherl − tv ≡ l + sv (mod p) (an a vertex shared by top
and bottom chains) or−tv− 1 ≡ sv− 1 (mod p) (a b vertex shared by top and bottom chains).
Each results in a contradiction.

vertex has one solid edge and one dashed edge incident on it).To have a cycle with an even

number of edges, the same contradictory conditions of Case 1apply.

Case 3:Onea column and oneb column contain all non-zero locations.

Denote the non-zero columns byal and bℓ. A solid edge comes from a set in column

al and a dashed edge comes from a set in columnbℓ. Assume first that the cycle does

not contain the edge that corresponds to the special set{a(ℓ−1)/2, b(ℓ−1)/2}. Then the

number of edges in the cycle is a multiple of4 (because of thea 99K a → b 99K b → a
structure), and it has the structure of Figure 4.5. For each path of length4 of the pattern

a 99K a → b 99K b → a, the index of the finala vertex is greater by2l + 2 modulop

than the index of the initiala vertex. Therefore, as seen at the top vertex in Figure 4.5,

the existence of such a cycle depends on the condition thati ≡ i + 2s(l + 1) (mod p),

for somes < (p − 1)/2. This is a contradiction for a primep and l < p − 1. Now

assume that there exists a cycle that does contain the edge{a(ℓ−1)/2, b(ℓ−1)/2}. In that

case there exists a path fromaℓ to b−l−2 (the only two vertices with degree1) with the

structure of Figure 4.6. For each path of length4 of the patternb → a 99K a → b 99K b,

the index of the finalb vertex is greater by2l + 2 modulop than the index of the initial

www.manaraa.com

116

a···

a···

a···

b···
b···

b···

b···

aiaℓ−1−ibℓ−i−l−2
bi+l+1

ai+2l+2

ai+4l+4

ai+2s(l+1)

Figure 4.5:A cycle from columnsal,bℓ. Solid edges represent sets from columnal whose indices
have differencel + 1. Dashed edges represent sets from columnbℓ whose indices sum toℓ − 1.
The two indices assigned to the top vertex imply thati = i+ 2s(l + 1) (mod p), which results in
a contradiction.

b vertex. Therefore, as seen at the top right vertex in Figure 4.6, the existence of such

a path depends on the condition that−l − 2 ≡ l + 2s(l + 1) (mod p), or equivalently

2(s+ 1)(l + 1) ≡ 0 (mod p), for somes < (p− 1)/2. This is again a contradiction for

a primep andl < p− 1. 2

Lemma 4.9 Aκ3◦ can be obtained fromAκ3 by a minimum-distance preserving transforma-

tion.

Proof: We show that by permuting the indices ofAκ3◦ , its columns and sets within its

columns,Aκ3 can be obtained. All these operations preserve the redundancy, minimum

distance of the code and its density. We provide the transformation and prove its aforemen-

tioned property fora andb columns separately.

a Columns:

Recall that the set in location(j, al) ∈ [1, p− 2]× [a0 , ap−2] of Aκ3◦ is

{〈ψ̄(a j) + l〉p−1 , 〈ψ̄(b j−1) + l〉p−1}.

www.manaraa.com

117

a···

a···

a···

a···

a···

b···

b···aℓ
bℓ−l−1

bl

bl+2l+2

b−l−2

bl+2s(l+1)

Figure 4.6:A path from columnsal,bℓ. If there exists a path from vertexaℓ to vertexb−l−2 then
the two indices assigned to the right top vertex imply that−l− 2 = l+ 2s(l+ 1) (mod p), which
results in a contradiction.

To show the transformation we look at the difference betweenthea index and theb index

above

〈ψ̄(j) + l〉p−1 − 〈ψ̄(j− 1) + l〉p−1,

and permute each summand usingψ to get

ψ
[〈ψ̄(j) + l〉p−1

]−ψ [〈ψ̄(j− 1) + l〉p−1
]

=

substituting the permutationsψ, ψ̄ we write

= βlogβ(j+1)+l − 1−βlogβ(j)+l + 1 =

= βl(j+ 1− j) = βl − 1+ 1 = ψ(l) + 1.

In words, pairs ofa, b indices ofAκ3◦ , after permutation, have the same relation as the pairs

of indices ofAκ3 (as defined in 1 of Definition 4.9), with columns permuted by the same

permutation. Since all elements in the sets of columnl of Aκ3◦ are distinct, permuting the

indices and columns usingψ results in the same sets that formAκ3 .

b Columns:

www.manaraa.com

118

We proceed similarly to the previous case but this time look at the sum

ψ
[〈ψ̄(j) + l〉p−1

]
+ψ

[〈ψ̄(p− 1− j) + l〉p−1
]

=

and substituteψ, ψ̄ to get

= βlogβ(j+1)+l − 1+βlogβ(p− j)+l − 1 =

= βl(j+ 1− j)− 2 = βl − 1− 1 = ψ(l)− 1.

For b columns too, permuting the indices and columns ofAκ3◦ results in the sets ofAκ3 (as

defined in 2 of Definition 4.9). 2

Lemma 4.8 and Lemma 4.9 together prove the main theorem of thesection.

Theorem 4.10 For every primep, κ3◦(p) has minimum column distance3, and thus it is

an MDS code.

4.6 Implementation Benefits of Cyclic and Quasi-Cyclic

Array Codes

Cyclic and Quasi-Cyclic array codes possess a more regular structure relative to general

array codes. Regular structures often simplify the realization of error-correcting codes

in complexity-limited systems. Cyclicb × n array codes can be specified using onlyb

sets, compared to thenb sets that are required to specify non-cyclic codes. That means

that encoder/decoder designs are much simpler for cyclic codes and they require lower

storage overhead for decoding tables. A pictorial illustration of this advantage is given in

Figures 4.7 and 4.8. The graph that represent a3× 6 array code is given in Figure 4.7. The

18 nodes of the graph marked with© represent the18 array bits, partitioned to6 groups,

each represents an array column. The6 nodes marked⊞ , represent the parity constraints

that the array bits must satisfy. To implement the code,30 edges need to be specified,

resulting in a complex realization of encoders and decoders. However, if the code is cyclic,

www.manaraa.com

119

then the description of Figure 4.8, with only5 edges, is sufficient and allows a simpler

regular implementation of the code (all other bit groups have the same local connectivity,

appropriately shifted cyclically). In particular, when the array code is implemented in

Figure 4.7:A full description of a sample3× 6 array code using 30 edges.

Figure 4.8:A compact description of a sample3× 6 cyclic array code using 5 edges.

a distributed fashion, as practiced in storage and network-storage applications, the cyclic

symmetry of the codes allows using a single uniform design for all nodes, contrary to non-

cyclic codes in which each node needs to perform different operations.

Though the exact advantage of cyclic codes depends on the qualities and constraints of

particular implementations, we next attempt to motivate their use in general, by illustrating

www.manaraa.com

120

some of their properties. The properties are given for cyclic codes only, but quasi-cyclic

codes enjoy similar properties with a slightly reduced symmetry.

4.6.1 Encoding and Updates

Property 4.1 In a systematically-cyclic array code (see Definition4.5), if updating an

information symbol at array location(j, l) requires updating parity symbols at array loca-

tions{(j1 , l1), . . . , (jr, lr)}, then updating an information symbol at array location(j, l +

s) requires the same parity updates at array locations

{(j1 , l1 + s), . . . , (jr, lr + s)}, where all+ operations are modulon.

This property, established directly from the parity-checkmatrix structure of systematically-

cyclic array codes, simplifies the circuitry needed for bit updates, an operation that is in-

voked at a very high rate in a typical dynamic storage application. In cylindrical storage

arrays, it also allows to update a group of array symbols without absolute angular synchro-

nization. Cyclic codes that are not systematically cyclic do not enjoy the same property, in

general.

4.6.2 Syndrome Calculation

The syndromes of a wordR with dimensionsb× n is obtained by first converting it, by

column stacking its elements, to a lengthnb column vectorr. Then it is defined ass = Hr.

Computing the syndrome is a first step in error and erasure decoding of array codes. A

more economic calculation of syndrome symbols is achieved for cyclic array codes thanks

to the following property.

Property 4.2 In a cyclic array code, if symboli of the syndrome is a functionf of the

symbols in the following array locationsf [(j1 , l1), (j2 , l2), . . .], then symboli + s of the

syndrome is the functionf [(j1 , l1 + s), (j2 , l2 + s), . . .], indices taken modulon.

www.manaraa.com

121

4.6.3 Erasure and Error Decoding

Property 4.3 If in a cyclic array code, a set of erased columnsΛ = {i1, . . . , it} is re-

covered by a matrix vector productH−1Λ s, wheres is the syndrome of the codeword with

missing symbols set to zero, then the set of erased columnsΛs = {i1 + s, . . . , it + s} (in-

dices modulon) is recovered byH−1Λ Uss, whereUs is the sparse matrix that cyclically

shifts the syndromeρs locations upward.

This property relies on the fact that for cyclic codes,HΛs = DsHΛ, whereDs is the sparse

matrix that cyclically shifts the rows ofHΛ, ρs locations downward. Taking the inverse

results inH−1
Λs

= H−1
Λ
D−1s = H−1

Λ
Us. The benefit of that property is that many of the

decoding matrices are cyclically equivalent, and therefore only a1/n portion of decoding

matrices needs to be stored, compared to non-cyclic array codes with the same parameters.

A similar advantage exists for error decoding, where the cyclic equivalence of syndromes

allows a simpler error location.

4.7 Conclusion

Beyond the practical benefit of the constructed cyclic codes, these codes and their relation-

ship to known non-cyclic codes raise interesting theoretical questions. The indirect proof

technique used for all three code families is a distinctive property of the code construc-

tions. It is curious that a direct MDS proof of the more structured cyclic codes, seems

hard to come by. Such a proof may reveal more about the structure of these codes and

possibly allow finding new code families. This optimistic view is supported by computer

searches that find cyclic lowest-density MDS codes with parameters that are not covered

by the known families of non-cyclic codes.

www.manaraa.com

122

Part II

Decoding Techniques

www.manaraa.com

123

Chapter 5

Decoding Beyond Half the Minimum
Distance

Instances of failed decoding are especially undesirable indata-storage systems, since they

cost a permanent loss of user data. Stronger decoders that can correct more errors are there-

fore sought, to improve the system’s reliability without introducing additional redundancy.

This task of increasing the decoder’s decoding radius entails two major challenges: high

decoding complexity and increased miscorrection probability. Both issues are the subject

of this chapter. The main contributions of this chapter can be summarized as follows.

• Analysis and optimization of Reed-Solomon list decoders based on theinstantaneous

number of errors.

• A new lower bound on the miscorrection probability of list decoders.

• The best known closed-form upper bound on the list size for codes over moderately

large alphabets. The same bound also improves over the classical q-ary Johnson

bound for constant-weight codes.

The majority of the results in this chapter have appeared in [CB05] and in [CB04].

5.1 Introduction

The core precept of Coding Theory is the trade-off between redundancy and correction

capability. Countless constructions and bounds couple codes’ correction capabilities with

www.manaraa.com

124

the corresponding redundancy that they carry. More often than not, correction capability

is measured in worst-case terms, allowing the employment ofcombinatorial and algebraic

analysis tools over the Hamming and other metric spaces. A far less studied framework,

at least in the combinatorial/algebraic domain, is that of fixing the code redundancy, and

analyzing the performance ofdecoderswith increased correction capabilities. This area of

study is calledlist decoding, debuted in the two articles by Elias [Eli57] and by Wozen-

craft [Woz58]. Despite the overwhelming theoretical horizons opened by these works, list

decoding remained off the coding-theory mainstream, mainly because of the absence of

algorithmic solutions to increasing the decoding radius. Amajor swing to the favor of list

decoding ensued when Sudan introduced a polynomial-time list decoder for Reed-Solomon

codes [Sud97], that had a strong impact on a multitude of active research areas in Theo-

retical Computer Science. In the Information Theory community, the advent of efficient

list-decoding algorithms has also created a great interest, focused on understanding the is-

sues of applying list-decoding schemes in communication and data-storage systems. This

chapter mostly follows the latter, more practically oriented, research trajectory of list de-

coding. In particular, it adds insight and novelty in the following study fronts:

• Algorithmic efficiency. How can list decoding be made less complex? A finer-grain

analysis and optimization of list-decoding algorithms, which is outside the scope of

their study in the computer science domain.

• Non-uniqueness of decoding.What are the practical consequences of decoding

beyond the unique-decoding bound? Study of possible decoding outcomes of list

decoders, reasoning about their interpretation and impacton performance.

Discussing the algorithmic list-decoding problem in sections 5.2, 5.3, 5.4, and 5.5, we fo-

cus on Reed-Solomon codes for both hard-decision and soft-decision decoding. While the

worst-case list-decoding complexity of Reed-Solomon codes is well understood as a func-

tion of the code parameters and the decoding radius, this analysis ignores the effect of the

number ofinstantaneous errorson the decoding complexity. In systems that employ RS

codes, the average number of instantaneous errors introduced by the channel, is typically

much lower than the decoder’s worst-case decoding radius. Hence optimizing the decod-

www.manaraa.com

125

ing complexity with respect to the number of instantaneous errors, improves the average

decoding time and in turn the decoder’s throughput. An average-case analysis of classi-

cal RS decoders is pursued in [BM85], where the running-timedependence on the error

weight is obtained experimentally. The study of [GKKG06] seeks to improve the average

case complexity of the RS algebraic soft decision decoder [KV03a], by using a layered

decoder whose decode time depends on the instantaneous channel noise. In this chapter,

the average-case analysis hinges on the dependence of theinterpolation cost(the num-

ber of required interpolation coefficients) on the error weight. This dependence is studied

and quantified in section 5.3 using analytical tools for hard-decision decoders. Then, in

section 5.4 an interpolation algorithm is proposed whose running time favorably depends

on the instantaneous interpolation cost. This algorithmicproposition achieves improved

average-case running time for both hard-decision and soft-decision decoding. Finally, in

section 5.5, a comparison of the instantaneous interpolation costs of hard-decision and soft-

decision decoders is carried out using simulations of both decoders.

The second part of the chapter in sections 5.6 and 5.7, discusses decoder behaviors

and code properties of general error-correcting codes, occasionally using Reed-Solomon

codes only as examples. The effect of increased decoding radius on themiscorrection

probability is especially interesting, and section 5.6 adds insight on that issue. In particular,

it shows that miscorrections occur significantly more frequently, even for small increases

in the decoding radius, questioning “popular belief” that asmall average list-size implies

that list decoders behave essentially the same as unique decoders. Section 5.7 presents

a closed-form upper bound on the decoder’s output-list size. This bound is an important

tool to achieve the bounds on miscorrection in the precedingsection, and a very interesting

combinatorial result in its own. This bound joins many otherattempts at bounding the

size of the list, in both the Information Theory and ComputerScience communities. For

moderately large alphabets it is the best known closed-formbound, and its generality allows

using bounds on binary constant-weight codes to further tighten it.

www.manaraa.com

126

5.2 Review of Guruswami-Sudan Algebraic List Decoding

A codewordC from an [n, k, d] Reed-Solomon (RS) code is the evaluation of a degree

k− 1 or less message polynomialf (x) on n distinct points of GF(q), {α1, . . . ,αn}. Let

E be an error vector of Hamming weighte over the same alphabet GF(q). The received

word R is defined asR = C + E, over GF(q) arithmetic. Classical decoding algorithms

of RS codes, e.g. the Berlekamp algorithm, the Massey algorithm, and their predecessor

Peterson-Gorenstein-Zierler algorithm (see [Bla83] for description of the algorithms), all

attempt to efficiently solve the following linear system ofν equations (ν = number of

errors):














S1 S2 · · · Sν−1 Sν

S2 S3 · · · Sν Sν+1

S3 S4 · · · Sν+1 Sν+2
...

...

Sν Sν+1 · · · S2ν−2 S2ν−1



























Λν

Λν−1

Λν−2
...

Λ1














=














−Sν+1

−Sν+2

−Sν+3
...

−S2ν














whereΛi are the coefficients of the unknown error-locator polynomial andS j are the known

syndromes. Whend ≥ 2ν + 1, this system of equations has a unique solution and thus

the algorithms mentioned above can decode errors up to half the minimum distance: the

unique-decoding bound.

A completely different approach to decoding RS codes, that can correct more errors

than classical algorithms, has been introduced by Sudan [Sud97], and improved by Gu-

ruswami and Sudan [GS99], using relatively simple but powerful algebraic-geometric ideas.

In the Guruswami-Sudan (GS) algorithm [GS99], the receivedword is used to interpolate

a bivariate polynomialQ(x, y). To achieve a large correction radius,Q(x, y) should be

the minimal(1, k − 1)-weighted degree1 bivariate polynomial that satisfies the following

n(m+1
2) constraints:Dr,sQ(αi, Ri) = 0 for i = {1, . . . , n} and{(r, s) : r + s < m}.

m is a decoder parameter called theinterpolation multiplicity. Dr,sQ(α,β) is the Hasse

1the (1, v)-weighted degree of a bivariate polynomial is the maximum over all of its monomialsxiy j of
the sumi+ v j

www.manaraa.com

127

derivative ofx-orderr andy-orders, evaluated on the pointx = α, y = β (more on Hasse

derivatives in sub-section 5.3.1 below and in [McE03a].) Ifthose interpolation constraints

are satisfied byQ(x, y), it is guaranteed that codewords within the prescribed decoding

radius of the decoder will be found by factorization ofQ(x, y). A block diagram of the GS

list-decoding algorithm is given in Figure 5.1 below.

INTERPOLATE FACTOR
R(x)

received
word

Q(x,y)

bi-variate

polynomial

f1 (x),f2 (x),…,f l (x)

list of candidate
codewords(m)

Figure 5.1:Block diagram of the Guruswami-Sudan list-decoding algorithm

By formulating the interpolation as a system of homogeneouslinear equations it has

been observed thatn(m+1
2) + 1 coefficients are sufficient to makeQ(x, y) satisfy the

above constraints. We denote by∁wc this worst case number of interpolation coefficients,

so ∁wc = n(m+1
2) + 1. ∁wc will be later called the worst caseinterpolation costof the

GS (n, k,m) decoder. The key yield from that decoding scheme is that a sufficient con-

dition to correctt errors ism(n − t) > d1,k−1(∁wc), whered1,k−1(J) is the minimal

(1, k − 1)-weighted degree of a bivariate polynomial withJ coefficients. Since in gen-

eral the number of correctable errorst is larger than⌊(d− 1)/2⌋, half the minimum dis-

tance of the code, the decoder output is alist that possibly contains multiple codewords.

Hence the qualifierlist-decodingis used for the GS decoder, as well as for other decoders

that correct beyond the unique decoding bound⌊(d− 1)/2⌋. Throughout the chapter, we

assume that the monomials of the interpolating polynomialsare ordered by nondecreas-

ing (1, k− 1)-weighted degrees, with reverse-lexicographic tie-breaking, i.e. x(k−1)s pre-

cedesx(k−1)(s−1)y (or in general, if two monomials have the same(1, k − 1)-weighted

degree, then a monomial with lowery-degree precedes others with highery-degrees). For

a more detailed discussion of multivariate polynomials andmonomial ordering please refer

www.manaraa.com

128

to [CLO97].

5.3 Interpolation Polynomials for Low-Weight Errors

In this section we develop tools for bounding the interpolation cost given an error weight.

The bounds are achieved by providing classes of interpolating polynomials for received

words resulting from an error of a given weight, and then analyzing the degrees of these

polynomials to get upper bounds on interpolation costs. To this end we have introduced the

worst case interpolation cost∁wc, which is determined by the decoder parametersn, k,m.

For the sake of the forthcoming analysis, we define the error-weight dependent interpola-

tion cost∁e(ǫ) as the number of interpolation coefficients required given an error wordǫ

of Hamming weighte. Note that∁e(ǫ) is not a function ofe alone; different interpolation

costs are possible for different error words of a given weight e.

5.3.1 Hasse derivatives

For their central role in the interpolation procedure, Hasse derivatives and their properties

are discussed in detail.

Definition 5.1 (The (r,s) Hasse derivative)The (r, s) Hasse derivative of a polynomial

Q(x, y), denotedDr,sQ(x, y) is defined as

Dr,sQ(x, y) = ∑
i, j

(
i

r

)(
j

s

)

ai, jx
i−ry j−s

whereai, j is the coefficient ofxiy j in Q(x, y).

Hasse derivatives owe their use in RS list-decoding to the following fact

Dr,sQ(α,β) = coeffxrysQ(x+α, y+β)

In words, the coefficient ofxrys in the polynomialQ(x+α, y+β) equals the(r, s) Hasse

derivative of the polynomialQ(x, y), evaluated at the pointx = α, y = β. We now turn to

www.manaraa.com

129

state (without proof) the well-known product rule for Hassederivatives.

Lemma 5.1 (The Hasse Derivative product rule)

The Hasse derivative of a product ofL polynomials

Dr,s

[
L

∏
i=1

Qi

]

= ∑
r1 + · · ·+ rL = r

s1 + · · ·+ sL = s

L

∏
i=1

Dri ,siQi

From Lemma 5.1 we get the following lemma.

Lemma 5.2 If Q(α,β) = 0, then for every{r, s : r + s < m}, Dr,s [Q(α,β)m] = 0,

whereDr,s [Q(α,β)m] is ther, s Hasse derivative ofQ(x, y)m, evaluated at(α,β).

Proof: Lemma 5.1 states that

Dr,s [Q(x, y)m] = ∑
r1 + · · ·+ rm = r

s1 + · · ·+ sm = s

m

∏
i=1

Dri,siQ(x, y)

sincer+ s = ∑mi=1(ri + si) < m, for every assignment tor1, s1, . . . , rm, sm at least one of

the pairs(ri, si) equals(0, 0). That means every product in the sum contains at least one

factorD0,0Q(x, y) = Q(x, y). Substituting(x, y) = (α,β), the right hand side evaluates

to zero. 2

5.3.2 Closed form upper bound on interpolation cost

Theorem 5.3 Let E be an error vector of weighte and let{ j1, j2, . . . , je} be the error

locations. Then there exists an interpolation polynomial whose last monomial (according

to the(1, k− 1)-weighted degree order with reverse-lexicographic tie breaking) has(x, y)-

degree of(em,m). This polynomial can be explicitly written as

Q(x, y) =
[
(y− f (x))(x −α j1)(x−α j2) · · · (x−α je)

]m
(5.1)

www.manaraa.com

130

Proof:

Dr,sQ(x, y) = Dr,s
[
(y− f (x))m(x−α j1)m · · · (x−α je)m

]
=

= ∑
r0 + r1 + · · ·+ re = r

s0 + s1 + · · ·+ se = s

Dr0,s0(y− f (x))m
e

∏
i=1

Dri ,si(x−α ji)m =

= ∑
r0 + r1 + · · ·+ re = r

Dr0,s(y− f (x))m
e

∏
i=1

Dri,0(x−α ji)m

If (r, s) satisfyr + s < m, then obviouslyr0 + s < m andri < m for i = {1, . . . , e}.
Therefore by Lemma 5.2, any product in the sum will have both afactor of y− f (x) and

factors ofx−α ji, for all i = {1, . . . , e}. This establishes thatDr,sQ(αi, Ri) = 0 for both

the correct symbols and the corrupted symbols. 2

The strength of the arguments used in the proof above is that they allow to predict

the form of interpolating polynomials for any error weight, even without constructively

interpolating particular received words.

Taking the polynomial structure of (5.1) with some straightforward monomial counting

we get a bound on∁e(ǫ) in the following corollary.

Corollary 5.4 Let∆ = m(e+ k− 1) andr = ∆ mod (k− 1). For any error of weighte

we have the following bound

∁e(ǫ) ≤
∆2

2(k− 1) +
∆

2
+
r(k− r− 1)
2(k− 1) +m+ 1 (5.2)

Proof: Theorem 5.3 proves that there exists an interpolating polynomial with(1, k− 1)-
weighted degree ofem+ (k− 1)m = ∆, whose last monomial (according to the monomial

order) isxemym. The expression in the right hand side of (5.2) is the straightforward cal-

culation of the position ofxemym in the monomial order, or equivalently the interpolation

cost. The inequality comes from the fact that theremay beother interpolating polynomials,

besides the one of Theorem 5.3, with lower interpolation cost. 2

www.manaraa.com

131

5.3.3 The no errors case

Theorem 5.5 Let ρ = k/n be the rate of the RS code. When the received wordR is a

codeword, the interpolation cost∁0(ǫ) satisfies

∁0(ǫ) ≤ ⌈ρ∁wc⌉

Proof: Definev = k− 1. WhenR is a codeword,R can be interpolated by the bivariate

polynomialQ(x, y) = (y− f (x))m. The last monomial of(y− f (x))m in the monomial

order isym, whose(1, v)-degree ismv.

Lemma 5.6 The location ofym in the monomial order isv(m+1
2) +m+ 1.

Proof: Because of the reverse lexicographic ordering,ym is the last monomial whose

(1, v)-degree ismv. Hence a polynomial whose last monomial isym has∁ non-zero coef-

ficients and∁ is given below.

∁ = |(i, j) : i+ v j ≤ mv| = v
(
m+ 1

2

)

+m+ 1

2

Now using Lemma 5.6 we get

∁ = v

(
m+ 1

2

)

+m+ 1 = k

(
m+ 1

2

)

− 1
2
(m+ 1)(m− 2)

Substitutingk(m+1
2) = ρ∁wc − ρ:

∁ = ρ∁wc − ρ−
1

2
(m+ 1)(m− 2)

1
2(m+ 1)(m− 2) ≥ −1 and so

∁ ≤ ρ∁wc − ρ+ 1 ≤ ⌈ρ∁wc⌉

Since∁ǫ(0) ≤ ∁ the theorem follows. 2

www.manaraa.com

132

5.3.4 Tighter bounds for higher weight errors

Whene is large, bounds on the interpolation cost can still be obtained, though using (5.2)

may not be the best choice. For such cases we can use the following theorem.

Theorem 5.7 Let E be an error vector of weighte and let{ j1, j2, . . . , je} be the error

locations. A polynomial of the form

Q(x, y) = (y− f (x))m′P(x, y)

is an interpolating polynomial whenP(x, y) satisfiese(m+1
2) + (n− e)(m−m′+12) interpo-

lation constraints.

Proof: We first find a minimal(1, k − 1)-degree polynomialP(x, y) that satisfies the

following constraints. For thee corrupted locations{ j1, j2, . . . , je}, we require the usual

interpolation constraintsDr,sP(α ji , R ji) = 0 for every(r, s) : r+ s < m. For then − e
uncorrupted locations we require fewer such constraints:Dr,sP(α j, R j) = 0 for every

(r, s) : r+ s < m−m′. Since for the corrupted symbolsP(x, y) alone satisfies all inter-

polation requirements,Q(x, y) obviously does so too. As for the uncorrupted symbols we

write

Dr,sQ(x, y) = ∑
r1 + r2 = r

s1 + s2 = s

Dr1,s1(y− f (x))m
′
Dr2,s2P(x, y)

Splitting the sum to two disjoint intervals

Dr,sQ(x, y) = ∑
r1 + r2 = r

s1 + s2 = s :

r1 + s1 < m′

Dr1,s1(y− f (x))m
′
Dr2,s2P(x, y)+

+ ∑
r1 + r2 = r

s1 + s2 = s :

r1 + s1 ≥ m′

Dr1,s1(y− f (x))m
′
Dr2,s2P(x, y) =

www.manaraa.com

133

∑
r1 + r2 = r

s1 + s2 = s :

r1 + s1 < m′

Dr1,s1(y− f (x))m
′
Dr2,s2P(x, y)+ ∑

r1 + r2 = r

s1 + s2 = s :

r2 + s2 ≤ r+ s−m′

Dr1,s1(y− f (x))m
′
Dr2,s2P(x, y)

The left sum is zero by Lemma 5.2 and the right sum is zero sincer+ s−m′ < m−m′

and the(r2, s2) : r2+ s2 < m−m′ Hasse derivatives ofP(x, y) vanish on the uncorrupted

locations by construction. 2

Corollary 5.8 For any 0 ≤ m′ ≤ m, let xdxydy be the monomial whose index in the

monomial order ise(m+1
2) + (n− e)(m−m′+12) and define∆′ = dx + (k− 1)(m′ + dy),

r′ = ∆′ mod (k− 1). Then the interpolation cost is bounded by

∁e(ǫ) ≤
(∆′)2

2(k− 1) +
∆′

2
+
r′(k− r′ − 1)
2(k− 1) +m′ + dy + 1 (5.3)

Proof: xdxydy is the last monomial of the polynomialP(x, y) used in Theorem 5.7. The

last monomial ofQ(x, y) is xdxym
′+dy, and its(1, k − 1)-weighted degree isdx + (k −

1)(m′ + dy) = ∆′. Now finding the interpolation cost ofQ(x, y) is a matter of calculating

the index ofxdxym
′+dy in the monomial order, in the same way that has been done in

Corollary 5.4. 2

Notes:

(1) Theorem 5.3 is a special case of Theorem 5.7 withm′ = m andP(x, y) univariate

in x. In general,m′ can be freely chosen to find the best bound on the interpolation cost

∁e(ǫ) for each error weighte.

(2) The more general bound of (5.3) is not given in closed formsince calculatingdx and

dy in closed form as functions of the monomial index in the orderis not possible. Closed

form upper bounds ondx anddy can be used instead, but the tightness of the bound would

be compromised in this case.

(3) The power of the composition ofQ(x, y) as a product of two polynomials seems

to lie on the following fact. In the interesting cases1 ≤ m′ < m, for each uncor-

rupted location the composition polynomial(y − f (x))m′P(x, y) satisfies more interpo-

lation constraints relative to the sum of constraints satisfied by the individual components

(y − f (x))m′ and P(x, y). (y − f (x))m′ satisfies(m
′+1
2) constraints,P(x, y) satisfies

www.manaraa.com

134

(m−m
′+1
2) and as proved in Theorem 5.7,Q(x, y) satisfies(m+1

2). These numbers reflect a

difference ofm′(m−m′).

5.3.5 Interpolation costs for a sample RS code

In section 5.3 bounds are given for the error-weight dependent interpolation costs. Here we

wish to explore the tightness of these bounds by interpolating received words induced by

different error words and comparing the observed interpolation costs to the bounds above.

For that task a GS decoder was implemented and run on a[n, k] = [31, 15] RS code.

The interpolation multiplicity chosen for the decoder ism = 3, which allows correcting9

errors and has a worst case interpolation cost of∁wc = n(m+1
2) + 1 = 187. The results are

summarized in Table 5.1 below. Each row reflects a value ofe and the columns compare

observed results to the bounds. The columns taggedobservedare the maximum, average

and minimum interpolation costs used by the decoder. These numbers were generated

using repeating runs (∼ 105 per e) with random errors. Fore ≤ 6, no interpolation costs

smaller than the closed form bound of Corollary 5.4 were observed. Fore = 7 the bound

is attained in almost all instances, with few exceptions of up to a difference of2. That is

the case also fore = 8, only that Corollary 5.8 is used to find an improved bound over

Corollary 5.4. Fore = 9 the best upper bound for the interpolation cost is∁wc. The results

of this experimental study are that the upper bounds on interpolation costs provided here are

tight in the worst case (max values attain the bounds for alle), and close to tight even in the

average case. Hence, at least for this sample decoder, the bounds provide a succinct and

reliable characterization of the decoder behavior. Validating the upper bounds’ tightness

becomes a practical challenge for long codes with large interpolation multiplicities, and

general analytical lower bounds seem hard to come by.

5.4 From Interpolation Cost to Decoding Complexity

In the preceding section it has been argued that in many casesthe interpolation cost is sig-

nificantly lower than the worst case∁wc. That immediately means factorization algorithms

would run faster in low cost instances. However, the most computationally expensive part

of the decoder is the interpolation algorithm. Unfortunately, a reduced interpolation cost

www.manaraa.com

135

observed
#errors worst case closed form improved max average min
e ∁wc (5.2) (5.3)
0 187 88 - 88 88 88
1 187 100 - 100 100 100
2 187 112 - 112 112 112
3 187 124 - 124 124 124
4 187 136 - 136 136 136
5 187 149 - 149 149 149
6 187 164 - 164 164 164
7 187 179 - 179 178.95 177
8 187 194 183 ,m′ = 1 183 182.97 179
9 187 209 187 ,m′ = 0 187 186.93 184

Table 5.1: Interpolation costs for the[31, 15] RS code withm = 3

does not automatically provide reduced running time of interpolation algorithms. Admit-

tedly, we will see that accepted interpolation algorithms do not translate the savings in

coefficients to savings in running time. That is true even in light of the fact that these al-

gorithms do eventually output the lowest degree interpolation polynomials. This situation

is unfortunate since the decoder fails to benefit from the worst-case/instantaneous-case gap

that was pointed out earlier in the chapter. We examine such behaviors of two interpolation

algorithms in the case of reduced interpolation cost. We subsequently suggest modifica-

tions to the interpolation algorithms to improve their average-case running time.

5.4.1 Gaussian elimination interpolation

By formulating the interpolation problem as a system of homogeneous linear equations,

Gaussian elimination stands out as a natural straight forward algorithm to solve it. This

interpolation method is not the most efficient that exists and we present it only to illustrate

the connection between interpolation cost and running time. A naive way to use Gaussian

elimination is to start with a(∁wc − 1)× ∁wc matrix and perform full Gaussian elimina-

tion. The number of rows being the number of interpolation constraints and the number

of columns is the worst case interpolation cost. Since that matrix is under-determined, at

termination we are guaranteed to reveal linearly dependentcolumns which result in coeffi-

cients of an interpolating polynomial. To analyze the running time of the above procedure,

www.manaraa.com

136

we will approximate the dimensions of the matrix by∁wc × ∁wc. It is well known that the

running time of Gaussian elimination on ac× c matrix approaches23c
3 finite field opera-

tions (plus lower order termso(c3)) [TB97, ch. IV]. This follows from

2
c

∑
k=1

c

∑
j=k+1

(c− k+ 1)→ 2
3
c3

Thus using straightforward Gaussian elimination would consume23∁
3
wc finite field opera-

tions, regardless of the actual interpolation cost of the decoding instance. By using a simple

variation on that process we can save considerably in the total number of field operations.

When a shorter interpolation polynomial exists, some of thecolumns in the matrix will not

participate in the interpolation. Exploiting that, a row operation should be performed on

a column index, only if the columns to its left are linearly independent. This replaces the

row operation on the full row vector performed in Gaussian elimination. An even more

obvious modification is stopping the process at the first timelinearly dependent columns

are revealed. If we denotec = ∁wc, c′ = ∁e(ǫ) andγ = c′
c , then the running time of the

modified Gaussian elimination will be

2
c′

∑
k=1

c

∑
j=k+1

(c′ − k+ 1)→ 2
3
cc′2 +

1

3
c′2(c− c′) =

=
2

3
∁3wc

(
3

2
γ2 − 1

2
γ3

)

and that yields a32γ
2 − 12γ3 factor of saving.

5.4.2 The standard interpolation algorithm

Now we wish, for the same purpose of average-case analysis, to consider the standard,

most efficient interpolation algorithm used in RS list decoding. This algorithm and its

variants are intensively studied in the literature [Köt96],[NH00], [KV03b], [AKS04] and

more. Its mathematical richness notwithstanding, only a rough sketch of the algorithm is

presented here, to focus on the computational issue at hand.The key idea of the algorithm

is to interpolateL+ 1 polynomials, each with a differenty-degree, and upon termination

www.manaraa.com

137

select the one with the lowest interpolation cost. By fixing the y-degrees throughout the

update process, a “greedy” update rule cumulatively satisfies all interpolation constraints,

and is guaranteed to output minimal polynomials for eachy-degree. The algorithm pseudo-

code description given in Figure 5.2, refers to this greedy update rule that successively

eliminates discrepancies with respect to all interpolation constraints. Theargminoperator

selects the indexj of the polynomialQ j whose highest monomial has the lowest index with

respect to the standard monomial ordering. The non-zero discrepancy of that lowest degree

polynomial is used to eliminate the discrepancies of other higher degree polynomials.

Initialize
Q j := y

j, ∀ j ∈ {0, . . . , L} // L is a bound on the y-degree of the output polynomial

for i := 1 to ∁wc − 1 // interpolation constraints

(1) δ(i)
j := discrepancy ofQ j with respect to constrainti

j∗ := argmin(j : δ(i)
j 6= 0)

forall j with non-zeroδ(i)
j

(2) for j 6= j∗ updateQ j with no change in degree
for j∗ updateQ j∗ with degree increment

output Q j with minimal degree

Figure 5.2:Standard interpolation algorithm (sketch)

Analyzing the complexity of the algorithm, it iterates on∁wc − 1 constraints and in

each iteration performs operations(1) and(2) on (at most)L+ 1 polynomials, each with

no more than∁wc coefficients. Therefore the worst case running time isL∁2wc finite field

operations.

We next observe that the running time will not be significantly better in cases when the

final interpolation cost is small. The reason being that the computation load is dominated

by operations on non-minimal polynomials. Even if a polynomial Q j∗ satisfies all inter-

polation constraints with low cost, the algorithm does not know the identity of thatj∗ in

advance and has to successively update all polynomialsQ j that have higher costs. It also

does not a priori know the final required cost and thus cannot exclude polynomials with

higher costs during computation. Consequently, this fast interpolation algorithm will have

an average case running time not better than that of the worstcase.

To fix that undesirable behavior, we modify the algorithm in away that discrepancy

www.manaraa.com

138

calculations and polynomial updates are performed only on polynomials whose coeffi-

cient counts are guaranteed to be at most the final interpolation cost. This can be done

by modifying the algorithm iteration, with no increase in worst-case running time. Storage

complexity is higher, as older versions of polynomialsQ j are needed for updates during

runtime. One can think of the modified algorithm as a relayed version of the standard

algorithm where each time the leading candidate (the minimal degree polynomial) is se-

quentially updated, until a better candidate is found. On its way, before it is updated with

degree increase, the best candidate stores its coefficientsand discrepancies to allow for fu-

ture candidates to ”catch up” with their updates. In Figure 5.3 the modified algorithm is

presented.

Initialize
Q j := y

j, ∀ j ∈ {0, . . . , L}
i j := 0, ∀ j ∈ {0, . . . , L} // constraint pointer for each j

j∗ := 0 // j∗ = argmin jQ j

while i j∗ < ∁wc − 1 // while no Q j satisfies all constraints

i j∗ + +

find δ
(i j∗)
j∗

if δ
(i j∗)
j∗ = 0 continue

(*) mem-lookup (∆[j, i j∗] , Q[j, i j∗]) // look for stored poly

if (found)updateQ j∗ with no change in degree
else

store (∆[j∗ , i j∗] , Q[j∗ , i j∗])← (δ
(i j∗)
j∗ , Q j∗)

updateQ j∗ with degree increment
j∗ := argmin jQ j // proceed with the best candidate

output Q j∗

Figure 5.3:Interpolation algorithm with improved average running time

mem-lookupin (*) refers to the action of looking up a stored polynomialQ j that had a

non-zero discrepancy oni j∗ . The following facts facilitate the correctness of the algorithm

and its complexity.

(1) Discrepancy calculations and polynomial updates are performed only on polynomi-

als with degrees lower than or equal to the final interpolation polynomial.

(2) The firstQ j whose pointeri j reaches an indexi is the lowest degree polynomial

www.manaraa.com

139

that satisfies constraints1, . . . , i− 1. Therefore, the stored polynomials will always be the

lowest degree polynomials that satisfy1, . . . , i− 1 but noti.

(3) If mem-lookup fails forQ j on constrainti j, it is equivalent toQ j being the lowest

degree polynomial with non-zero discrepancy oni j.

(4) The polynomial whose pointeri j first reaches∁wc satisfies all constraints and is the

minimal to achieve that.

For every constraint with non-zero discrepancy, at most onepolynomial is stored and each

of these has at most∁e(ǫ) coefficients. Thus in this non-optimized formulation, the amount

of memory required for coefficient storage is bounded by(γ∁wc)2. The time complexity

of the algorithm isγ∁2wc, since for each constraint, discrepancy calculation evaluates a

polynomial with at mostγ∁wc coefficients.

0
1

2

31

30 N
i

+1-1
()

16

Figure 5.4: Channel model for soft-decision decoding. One of32 symbols is transmitted and
corrupted by a noise processNi with bounded support(−1, 1). The small support ensures a very
simple case of soft-decision decoding where only two symbols are assigned non-zero interpolation
multiplicities.

5.5 Interpolation Cost in Soft-Decision Decoders

The bounds presented thus far apply to GS decoders which havea fixed interpolation mul-

tiplicity m. They do not apply to the weighted interpolation used by Kötter and Vardy’s

www.manaraa.com

140

hard errors

A
V

er
ag

e
in

te
rp

ol
at

io
n

co
st

Soft decision
Hard decision

0 1 2 3 4 5 6 7 8 9
80

100

120

140

160

180

200

Figure 5.5: SD-HD comparison, average interpolation cost. Low error weights reduce the in-
terpolation cost in hard-decision decoding and much less soin soft-decision decoding. For the
same-worst case complexity the soft-decision decoder has higher average-case complexity.

soft decision decoder that was shown to correct more errors when soft inputs are avail-

able. In this section we examine another aspect of algebraicsoft-decision list-decoders:

their error-dependent interpolation costs. Since soft decision decoders surrender their fixed

multiplicity property, none of the bounds above apply to them. Moreover, when the de-

coder inputs are soft symbols, different ways exist to definethe instantaneous channel error

upon which the interpolation cost may depend. The difficultyof analytic treatment of the

soft decision case arises from the fact that the interpolation cost depends on the interpola-

tion multiplicities which in turn depend on the channel error in a non-simple fashion. The

bounds obtained for the hard decision case used the structure of the interpolation polyno-

mial endowed by the fixed multiplicitym. It is therefore conjectured that the soft decision

decoder will not enjoy as favorable interpolation cost behavior, and consequently will have

higher average case decoding complexity, even if it is designed for the same worst case cost

www.manaraa.com

141

hard errors

in
te

rp
ol

at
io

n
co

st

Average
Minimum
Maximum

0 1 2 3 4 5 6 7 8 9
120

130

140

150

160

170

180

190

Figure 5.6: Interpolation cost of SD decoder, MAX, MIN and AVERAGE. Contrary to hard-
decision decoding, soft-decision decoding exhibits high variability of the interpolation cost given
an error weight.

as the hard decision decoder. To support that conjecture we veer to the experimental realm.

5.5.1 Simulation results for soft-decision decoding

For the[31, 15] RS code of section 5.3.5, we simulated soft decoding over a channel whose

description follows. We regard the32 alphabet symbols as integers lying on a ring of

circumference32 (see Figure 5.4). The noise is taken to be an additive (modulo32) i.i.d

random process, denotedN = {N1, . . . ,Nn}. For simplicity we take the probability

density function ofNi to have a bounded support(−1, 1). This property implies that

at most two symbols will be assigned non-zero interpolationmultiplicities by the Kötter-

Vardy algorithm. The decoder we used has a worst case interpolation cost identical to that

of the hard decision decoder we used in section 5.3.5:∁wc = 187. It is thus interesting to

compare the instantaneous interpolation costs exhibited by the soft-decision decoder to that

www.manaraa.com

142

of the hard-decision decoder. To have a ground for comparison, we plot the interpolation

cost as a function of the number of ”hard” errorse caused by the channel. This number can

be recovered bye = |{Ni : |Ni| > 0.5}|. In Figure 5.5 the hard decision (HD) and soft

decision (SD) average interpolation costs are plotted as a function of the number of errors.

Each point on the graphs was obtained from an order of105 runs. We see that for low error

weights the SD decoder requires higher interpolation costscompared to the HD decoder.

For high weights SD is more efficient but only slightly. Another difference can be seen

in Figure 5.6. While Table 5.1 shows the low variability of the cost for the HD decoder,

Figure 5.6 shows that this is not the case for its SD counterpart. Both the relative flatness

in Figure 5.5 and the variability across runs in Figure 5.6 indicate that in SD decoding, the

dependence of the interpolation costs on the error weight israther weak, contrary to the HD

case. Once decoder running times depend on the instantaneous interpolation costs and not

merely on the worst-case, the average decoding time of SD decoders may be higher than

HD, even if they have identical worst-case running times.

5.6 Miscorrection Probability of List Decoders

When the number of symbol errors within a code block is large,decoding can go wrong in

two different ways. The first, calleddecoding failure, is when the decoder cannot correct

the errors and thus declares failure without providing any hypothesis on the transmitted

codeword (detected error). The second, and more detrimental outcome, is calledmiscor-

rection, that happens when the decoder outputs a wrong codeword as its hypothesis on the

transmitted codeword (undetected error). Three possible decoding outcomes are illustrated

in Figure 5.7. The circle markedC0 represents the transmitted codeword, the squareE is

the received word, and̄C is a different codeword (not the transmitted one) found in the

decoding ball.

Miscorrections cannot happen whent, the decoding radius of the decoder (the radius

of the Hamming ball around the received word to which decoderoutputs are limited), and

e, the Hamming weight of the error, satisfyt+ e < d, whered is the minimum Hamming

distance of the code. In the common case of decoders with maximal decoding radius under

www.manaraa.com

143

(a) (b) (c)

C0

C0

C0
C̄

E
EE

Figure 5.7: Possible decoding outcomes. (a) Successful decoding. (b) Decoding failure. (c)
Miscorrection.

unique decoding (2t + 1 = d), any error of weighte > t maycause miscorrection, and

obviously any error of weighte ≤ t is successfully corrected. In the case of unique decod-

ing, when the code is linear and the channel is symmetric, theprobability of miscorrection

can be calculatedexactlyif the weight distribution of the code is known [HM77]. This has

independently been shown for the special case of linear MDS codes in [Che92].

For a given error weighte, all error words of that weight are partitioned intodecodable

words, error words that result in a miscorrection, andnon-decodable words, error words

that are either successfully decoded or result in decoding failure. Finding the miscorrection

probability is thus reduced to counting the number of decodable error words of weight

e and dividing this number by the total number of error words ofthe same weight. The

notion of decodable words is best described graphically. InFigure 5.8, a bipartite graph is

shown whose left nodes are all the codewords, excluding the all zero codeword, and right

nodes are error words of some weighte. An edge connects a codeword and an error word

if their Hamming distance ist (the decoding radius) or less. If the code is linear, one can

assume that the all zero codeword was transmitted. In that case, it is readily seen that error

wordsE on the right that have at least one incident edge, are decodable words that result

in miscorrection. This is true since the decoder will outputas hypotheses the non-zero

codewords connected to the error word. When2t+ 1 ≤ d, an error word can have at most

one incident edge, otherwise it would imply two codewords that are in distance less than

d apart. In that case counting theedgesof the graph is equivalent to counting decodable

www.manaraa.com

144

words; and indeed, it is observed that the counting methods of both [HM77] and [Che92]

count the exact number of edges in that graph.

EC

Figure 5.8:Decodability graph under unique decoding. A right error-word node is connected to
a left codeword node if they are at Hamming distancet or less from each other. Unique decoding
guarantees that the degree of any error-word node is at most one.

When the decoding radius is stretched beyond unique decoding (2t ≥ d), error words

may have multiple incident edges, and counting edges becomes only an upper bound on

the number of decodable words (a similar observation was made in [McE03b]). A graph-

ical description of this scenario is shown in Figure 5.9: twoof the received words in the

graph, marked with dashed circles, have multiple incident edges and are therefore multiply

counted as decodable words, resulting in an overestimate onthe miscorrection probability.

The main observation of this section, made simple by the chosen graphical description,

is that alower bound on the number of decodable words can be obtained using an upper

bound on the number of edges incident on error-word nodes. Ifthe number of decodable

words is denotedDt(e), the number of edges in the graph denoted|Ee|, andM is an upper

bound on the degree ofE nodes, then

|Ee|
M
≤ Dt(e) ≤ |Ee|

www.manaraa.com

145

EC

Figure 5.9:Decodability graph under list decoding. Some error-word nodes have degrees greater
than one that leads to multiply-counted decodable error-words.

Good boundsM on the degree ofE nodes, arguably useful in obtaining lower bounds

on miscorrection, turn out to independently be a fundamental problem in the area of list

decoding – that of bounding the size of the decoder’s output list. For moderately large

alphabets, the bound derived in the next section is the tightest known closed-form bound

on the list size, and hence provides the best known lower bound on the miscorrection prob-

ability. Bounds on miscorrection probability of a sample list decoder are now compared.

Results for a linear MDS code with parametersn = 31, k = 15, d = 17, q = 32 (q is

the alphabet size of the code) are shown in Figure 5.10 for decoding radius oft = 9. The

curves from top to bottom are: i) the upper bound|Ee| using the method from [HM77].

ii) improved lower bound|Ee|/M, usingM from the next section. iii) lower bound that

counts the exact number of correctable words for decoder radius of t0 = (d− 1)/2 = 8.

The true value of the miscorrection is proved to be between the two upper curves. The

sample results reflect a1.5 orders of magnitude improvement by the new bound compared

to the (previously best known) bound that assumes decoding radius of an optimal unique

decoder. Consequently, in spite of the constant factor gap between the new lower bound

and the upper bound, the new lower bound does show that the miscorrection probability

grows significantly when decoding beyond the unique decoding bound.

www.manaraa.com

146

9 10 11 12 13 14 15 16 17 18
10

−7

10
−6

10
−5

10
−4

10
−3

#errors u

P
e(

u)

Figure 5.10:Bounds on the miscorrection probability for a [31,15] MDS code, decoded to radius
9. The solid curve is an upper bound by counting edges in the decodability graph. The lower dashed
curve is a lower bound that counts decodable words only within the unique-decoding sphere. The
upper dashed curve is the new lower bound.

5.7 A Combinatorial Bound on the Decoder’s Output-List

Size

For a decoding instance of a decoder whose radius is greater than half the code’s minimum

distance, unique decoding is not guaranteed and the decoderoutputs, in general, a list of

codewords that fall in the decoding Hamming ball. Bounding from above the size of this

codeword list is a well studied problem with both theoretical and practical appeal. Codes

that have short lists for relatively large decoding radii are termedlist-decodable, and their

design is of prime interest. In this section we focus on caseswhere the worst-case list-size

is bounded by a constant number (independent ofn), and try to find the smallest of such

constant bounds. From a theoretical standpoint, a list sizethat is at most polynomial in the

code length is a necessary condition for having a polynomial-time list-decoding algorithm.

For practical usage of list decoders however, very small constant-size lists are desirable, to

minimize the information uncertainty at the decoder output.

Though list-decodability of a code does not necessarily imply good minimum distance,

www.manaraa.com

147

the minimum distance does ensure a certain degree of list-decodability. The bound derived

in this section, as those that predate it, uses the minimum distance of a code to bound the list

size of a radiust decoder for that code. Hence it applies toanycode with a given minimum

distance. The reason we can bound the number of codewords in aradius t Hamming

ball, just based on the minimum distance is rather obvious; packing many codewords in

a small ball is impossible when every pair of codewords should be at leastd apart. As

mentioned in other works that deal with the worst case list size, most notably [Eli91] and

[Gur01, Ch.3], this problem is closely related to the problem of bounding the maximal

size of a constant-weight code. Accordingly, Johnson boundbased arguments [MS77,

pp.525], with necessary modifications, prove effective forthe list-size problem. In [Eli91],

the Johnson bound is shown to provide a valid list-size boundin the binary case. Theq-

ary case was addressed in [GRS00], though the main bound there can be extracted from

theq-ary generalization of the Johnson bound, and a simple argument on its applicability

to the list-size problem (see for example 2.3.1 of [HP03] forthe q-ary Johnson bound).

An improvement over [GRS00] for short codes was reported in [GS01] using a geometric

approach. The bound presented here is better than its predecessors when the alphabet

sizeq is “large enough”. The threshold alphabet size for the boundto be tighter depends

solely on the ratiosd/n and t/n. Therefore, for code families such that their alphabet

grows with their length (e.g. Reed-Solomon), this bound will be asymptotically tighter.

For sample codes, the new bound is compared to the best known bound and are found

to offer improvement even for relatively short codes. This encouraging behavior of the

bound is further validated by showing that the bound is very close, at most a small constant

away, to the algebraic bound of [McE03a] for RS codes, despite being simpler and more

general - thus proving that RS codes are not significantly more list-decodable than any

other code with the same(n, d, t) parameters. We note that in [RR03], the authors proved

a similar conclusion that the Guruswami-Sudan algebraic bound on the decoding radius of

a list decoder applies to a general block code. Nevertheless, this result yields no closed

form expression for the list size. Such a simple closed form expression is often required to

analyze the behavior of the code, as was done in the previous section with lower bounds

on the miscorrection probability. Moreover, the bound presented here is more general and

www.manaraa.com

148

may be further tightened using non-Johnson based techniques.

5.7.1 Derivation of the bound

For a code with lengthn and minimum distanced we want to bound the number of code-

words that can reside in an arbitrary Hamming ball of radiust. Similarly to Elias [Eli91]

and Goldreich et al [GRS00], our analysis is combinatorial and thus applies to a general

code. In distinction from those known bounds, we give a boundwhich is independent of

the alphabet size of the code.

Theorem 5.9 Let C∗ be a length-n code over any alphabet of sizeq and with minimum

Hamming distanced. LetM(E) be the number of codewords in Hamming distance at most

t from a particular wordE: M(E) = |{C ∈ C∗ : D(C, E) ≤ t}|. Then if⌊(d− 1)/2⌋ <

t < d we have

M(E) ≤ A2(n, 2(d− t), t) (5.4)

whereA2(n, 2(d− t), t) is the size of the largest binaryconstant-weight code with weight

t and minimum distance2(d− t).

Proof: We first consider the maximal number of codewords on thesurfaceof thet ball.

LetM′(E) = |{C ∈ C∗ : D(C, E) = t}|. We fixE and defineM′ = M′(E). For any pair

of codewordsCi,C j that are both in distancet from E, we haved ≤ D(Ci,C j) ≤ 2t. We

useX(l) to denote the symbol on thelth coordinate ofX. Then we define a pair of binary

vectorsKi,K j to beKi(l) = 1 if Ci(l) 6= E(l) and0 otherwise, similarly forK j. Then

|{l : K j(l) = 1}| = |{m : Ki(m) = 1}| = t. We define thespanof two binary vectors as

the number of coordinates that are1 in at least one of the vectors

span(Xi ,X j) ≡ |{l : Xi(l) = 1} ∪ {m : X j(m) = 1}|

We claim that

span(Ki ,K j) ≥ d

www.manaraa.com

149

Otherwise there were more thann− d coordinates in whichCi(l) = E(l) = C j(l), which

would contradict the distance requirementD(Ci,C j) ≥ d. So a necessary condition to

find M′ codewords in distancet from E is the existence ofM′ binary vectors of weight

t such that each pair(i, j), i 6= j, hasspan(Ki,K j) ≥ d (note that this condition is not

sufficient since two codewords may haveCi(l) 6= E(l), C j(l) 6= E(l) butCi(l) = C j(l) -

thus violating the minimum distance requirement). Therefore, since no two codewords can

have the same weight-t binary vector as theirK vector2, an upper bound on the number of

such binaryK vectors will be an upper bound onM′ for any alphabet size. The weight and

span requirements together imply that the ones ofKi andK j are allowed to overlap on at

most2t− d coordinates:|{l : Ki(l) = 1} ∩ {m : K j(m) = 1}| ≤ 2t− d. This key fact

allows boundingM′ from above using bounds on the size ofbinaryconstant-weight codes

with minimum distance2(t− (2t− d)) = 2(d− t):

M′ ≤ A2(n, 2(d− t), t) (5.5)

To complete the proof we want to show that the upper bound onM′ is also an upper bound

onM. We defineW(X) to be the Hamming weight ofX and claim the following. If we

haveM binary words such that every pair(Ki,K j) taken from them satisfies

(G1)W(Ki),W(K j) ≤ t
(G2) span(Ki ,K j) ≥ d
then there existM binary words such that any pair satisfies

(P1)W(Ki),W(K j) = t

(P2)span(Ki,K j) ≥ d
This implication is established by the following two arguments. First, increasing the weight

of Ki orK j by changing arbitraryt−W(K) zeros to ones cannot decrease the span. Second,

such modification cannot result in having two identicalK vectors and so the number of

distinct vectors is preserved in the process. The second, more subtle, argument is resolved

by observing thatt < d and the non-decrease of the span imply that having two identical

K vectors with weightt violatesspan(Ki ,K j) ≥ d, in contradiction with (G2) above. 2

2such a pair would havespan(K,K) = t < d

www.manaraa.com

150

Note that if the alphabet ofC∗ is binary (q = 2), the inequality (5.4) is useless since

the conditiond < 2t + 1 impliesM′ ≤ A2(n, d, t) ≤ A2(n, 2(d − t), t). However,

as shown in the next sub-section, even for relatively small alphabet sizes, the bound on

A2(n, 2(d − t), t) in the next Corollary turns out to be the best known bound on the list

sizeM.

Corollary 5.10 Let C∗ be a length-n code over any alphabet of sizeq and with minimum

Hamming distanced. Then if⌊(d− 1)/2⌋ < t < n
(

1−
√

1− d/n
)

we have

M(E) ≤ n(d− t)
t2 − 2nt+ dn (5.6)

Proof: To use Theorem 5.9, we first prove that

t < n

(

1−
√

1− d/n
)

⇒ t < d

This can be done by simple manipulation as follows.

n

(

1−
√

1− d/n
)

= n−
√

n(n− d) ≤ n− (n− d) = d

Now, re-deriving the classical binary Johnson bound [MS77,Ch.17] for the parameters

of (5.4) we get
t2M2

n
− tM ≤ (2t− d)M(M − 1)

(
t2

n
− 2t+ d

)

M

[

M− d− t
t2

n − 2t+ d

]

≤ 0

Solving forM, we get

M ≤ n(d− t)
t2 − 2nt+ dn

under the condition
t2

n
− 2t+ d > 0 (5.7)

www.manaraa.com

151

Solving for the condition (5.7)

t < n

(

1−
√

1− d/n
)

(5.8)

2

We next turn to analyze the proposed bound (5.6). In sub-section 5.7.2, we evaluate it in

comparison to the best known closed-form combinatorial bounds, and give exact threshold

on the alphabet size, above which it is tighter than the previously best known. In sub-

section 5.7.3, we explore the strong link the bound has to theseemingly unrelated algebraic

bound for Reed-Solomon codes.

5.7.2 Comparison with known combinatorial bounds

A possible justification for aq-independent bound arises from the following. Ignoring the

alphabet size in the proof of Theorem 5.9 required us to countthe overlapping coordinates

towardsd, which is less restrictive (and thus result in a looser bound) than the Johnson

bound in the binary case. However, if the alphabet size is large ”enough”, overlapping

symbols are most likely to be different anyway, and the span requirement will capture the

limitation on the number of codewords in the ball. As it turnsout, this simplification proves

advantageous for giving strictly tighter bounds for alphabets above some threshold.

To simplify the analysis we fix the relative distance byγ = 1 − d/n and the decoding

radius byδ = 1− t/n. Now the bound (5.6) is rewritten as

M ≤ δ− γ
δ2 − γ (5.9)

Henceforth we denote the bound in the right hand side of (5.9)by MC. For nontrivial

codes we require0 < γ < 1 and forδ we require
√
γ < δ < 1+γ

2 . The lower limit is

to maintain positive denominator in (5.9) and the upper limit represents decoding beyond

half the minimum distance. The main bound of [GRS00, Thm 4.2], which, to the best of

www.manaraa.com

152

our knowledge, is the tightest known, asserts

M ≤
(1− γ)(1− 1q)

(δ− 1q)2 − (1− 1q)(γ − 1q)
(5.10)

which for largeq tends to 1−γ
δ2−γ , a value larger than (5.9) sinceδ < 1. The exact alphabet

sizeq0, above which (5.9) is tighter than (5.10) can be recovered, as a function ofγ, δ, by

solving the following inequality forq

(1− γ)(1− 1q)
(δ− 1q)2 − (1− 1q)(γ − 1q)

>
δ− γ
δ2 − γ

The above simplifies to a linear inequality and yields the threshold

q > q0(γ, δ) =
δ(1+ γ)− 2γ

δ2 − γ

Hence we proved the following proposition.

Proposition 5.11 For δ >
√
γ and q > q0(γ, δ), the boundMC = (δ − γ)/(δ2 − γ)

is the best known closed-form upper bound on the list size of ageneral code with relative

distance1− γ, decoded to relative radius1− δ.

Table 5.2 shows a comparison of the bounds for sample codes. The rightmost column is

theq0 found above for the corresponding parametersn, d, t.

(n, d, t), q (5.6) [GRS00] q0
(31, 17, 9), 32 4 10 2
(31, 17, 10), 32 31 51 11

(255, 33, 17), 256 120 239 9
(18, 17, 13), 19 10 18 8

Table 5.2: Bound comparison for sample decoders

We note that the numbers in column (5.6) of the table do not improve over values

computed by thenon-closed-formbound of [RR03]. However, the general inequality

M ≤ A2(n, 2(d − t), t) allows to use stronger bounds on binary constant-weight codes

to potentially improve over the particular Johnson-technique used in both Corollary 5.10

www.manaraa.com

153

and [RR03]. Such tighter bounds do exist for specific parameters or families of parameters

(e.g. the Erdös-Hanani exact evaluation ofA2(n, 2t− 2, t) [MS77, Ch.17]). It should also

be noted that the upper bound on the list size given in (5.10) is identical to theq-ary John-

son bound for constant-weight codes, hence the new upper bound (5.9) is tighter than the

q-ary Johnson bound as a bound on constant-weight codes.

5.7.3 Comparison with algebraic bound for Reed-Solomon codes

The decoding radii for which the proposed bound applies are those that satisfy (5.8). For

Reed-Solomon codes that implies

t < n−
√

(k− 1)n,

which equals exactly the famous Guruswami-Sudan bound for decoding Reed-Solomon

codes efficiently using the GS algorithm [GS99]. This coincidence of domains between

the bounds allows us to set forth a comparison between the general combinatorial list-size

bound, and the Reed-Solomon specific algebraic bound.

Algebraic list-size Bound

In [McE03a] McEliece provides a two step, closed form list-size bound, derived from ar-

guments on maximal degrees of bivariate polynomials. The first step is determining the

minimum interpolation multiplicity3 required to achieve decoding radius oft

m > (k− 1) · t+
√

n(2t+ k− 1− n)
2((n− t)2 − (k− 1)n) = γ

1− δ+
√
γ − 2δ+ 1

2(δ2 − γ)
(5.11)

The second step uses a list-size boundMA that is given as a function of the multiplicitym.

MA ≈
(

m+
1

2

) √
n

k− 1 (5.12)

≈ here means that the right hand side is less than1 greater than the true value of the bound

(this notation was chosen over the usage of⌈·⌉ to obtain cleaner expressions). Substituting

3In [McE03a]t is bounded givenm so the expression here is the corresponding bound onm givent.

www.manaraa.com

154

m from (5.11) into (5.12) we get

MA ≈
√
γ

2
·
1− δ+

√
1− 2δ+ γ + 1

γ
(δ2 − γ)

δ2 − γ

So far we have a combinatorial boundMC = δ−γ
δ2−γ and an algebraic boundMA above. We

want to argue thatMC is close toMA despite being more general. The following theorem

shows that when approaching the strongest GS decoder (decoding radii that attain the GS

bound)MC andMA converge to the same bound.

Theorem 5.12 limδ→√γ
MA
MC

= 1

Proof: Elementary substitutionδ =
√
γ into MAMC .

2

It is also possible to show that the differenceMC −MA is small for generalγ, δ.

Theorem 5.13 For every pairγ, δ the combinatorial and algebraic bounds on the list size

satisfy

MC −MA <
1

4

[

1+
2

1−√γ

]

Proof: We first prove a simple lemma.

Lemma 5.14 If
√
γ < δ < 1+γ

2 then

√

1− 2δ+ γ >
1− 2δ+ γ

1−√γ (5.13)

Proof:
(
1− 2δ+ γ

1−√γ

)2

−
(√

1− 2δ+ γ
)2

=

=
4δ2 − δ(2γ + 2+ 4

√
γ) + 2

√
γ(1+ γ)

(1−√γ)2
=

=
4

>0
︷ ︸︸ ︷

(δ−√γ)

<0
︷ ︸︸ ︷

(δ− 1+ γ

2
)

(1−√γ)2
< 0

www.manaraa.com

155

the lemma follows since both sides of (5.13) are positive sox2 − y2 < 0⇒ x < y. 2

We are now ready to prove the theorem

MA +
1

4

[

1+
2

1−√γ

]

−MC =

=

√
γ

2
·
1− δ+

√
1− 2δ+ γ+ 1

γ (δ2 − γ)

δ2 − γ +
3−√γ
4(1−√γ)

− δ− γ
δ2 − γ >

>

√
γ

2
·
1− δ+ 1−2δ+γ

1−√γ + 1
γ (δ2 − γ)

δ2 − γ +
3−√γ
4(1−√γ)

− δ− γ
δ2 − γ =

=
(δ−√γ)(2+

√
γ− γ)

4
√
γ(1−√γ)(δ+

√
γ)

> 0

The first inequality follows from Lemma 5.14, the equality from straightforward rearrange-

ments and the last inequality from the positivity of both thenumerator and denominator for

0 < γ < 1,
√
γ < δ < 1+γ

2 . 2

Substituting sample values ofγ we get the following corollary.

Corollary 5.15

(1)MC = MA for all δ whenγ ≤ 0.11
(2)MC −MA ≤ 1 for all δ whenγ ≤ 0.51
(3)MC −MA ≤ 4 for all δ whenγ ≤ 0.8
(4)MC −MA ≤ 9 for all δ whenγ ≤ 0.9

It is thus concluded that the list decodability of Reed-Solomon codes is not known to be

significantly better than that of any other code with the sameparameters (apart from the

existence of a constructive way to list-decode them, of course).

www.manaraa.com

156

5.8 Notes and Open Questions

Analytic treatment of soft-decision algebraic list decoders is hard in general. However,

analyzing the interpolation costs of restricted soft-decision decoders (such as the one used

here with only two non-zero multiplicities), can help improving their average running time.

There is still a large gap between the lower and upper bounds on the miscorrection

probability, mainly because of the coarse bounding technique used here. It is an interesting

open question whether finer arguments on the degrees of errorwords in the decodability

graph can be used to obtain tighter lower bounds. It is plausible that using knowledge on

the particular code for such degree arguments will improve over our current method that is

general to any code of the given parameters.

For the problem of finding upper bounds on the codeword-list size, it is interesting to

note that there exist either pure combinatorial bounds (forgeneral codes), or pure alge-

braic bounds (for specific codes e.g. Reed-Solomon), but potential progress may come by

combining combinatorial and algebraic arguments to obtaintighter bounds.

www.manaraa.com

157

Chapter 6

Forward-Looking Summary

In this short chapter, the author will take a step back from his emotional attachment to the

research results above, and will instead wear the hat of an unbiased (but positive) critique.

The purpose of this process is to depart from the serial, application-driven mode of presen-

tation, and try to sieve out and evaluate core concepts that are introduced throughout the

thesis. Then, when a general concept is identified, the scopeof the thesis suddenly looks

quite limited, and projecting intriguing and farther-reaching research directions becomes

simple and natural.

• In symmetric channels and error models, alphabet symbols are abstract objects that

carry no geometric meaning. The key idea in the constructions of Chapter 2, is that

when alphabet symbolsdo encompass structure, a powerful technique is to construct

codes that in addition to constraints on the code block, use clever mappings between

the code alphabet and lower alphabets that capture the geometry of the error model.

Admittedly, the error model considered here is a relativelysimple instantiation of

this idea, so it is a wide and interesting research trajectory to extend this method to

other error models that are motivated by other applications.

• Chapter 3 introduces a valuable new characterization of code-location sets, that is

used to propose an error model calledClustered erasures. Even that specific error

model is only addressed for the case of up to4 erasures. A very interesting open

question is then whether this useful new cluster-based characterization lends itself to

a nice coding-theoretic treatment in a much broader scope.

www.manaraa.com

158

Another important outcome of the results of Chapter 3 is thatin some cases departing

from the MDS requirement on the code has minimal negative impact on its correction

capability and significant positive impact on its implementation complexity. MDS

erasure codes are heavily used in many fields as an abstract object (often called “k

out ofn schemes”). In many of these other usages of MDS codes, the MDSproperty

is too strong, and a refinement of the particular model requirements can similarly

lead to algorithmic savings.

• The very regular structure of the new array codes of Chapter 4, and their low-density

parity-check matrices, make them excellent candidates to be decoded using iterative

message-passing decoders. However, such decoders would view these array codes

as one-dimensional binary codes, not utilizing the structure of their column-based

error model. To improve iterative decoding of array codes, avery promising research

path follows the idea of augmenting the code graphs of array codes with auxiliary

nodes that bias the decoder toward errors that fall into a small number of columns.

It is conjectured that performance gain can be achieved evenwithout assuming any

knowledge on the distribution of errors.

• If we needed more evidence of the great structure of Reed-Solomon codes, Chap-

ter 5 has added its small share: analytically characterizing interpolation costs given

instantaneous error weights. Examining and improving Reed-Solomon decoders un-

der low instantaneous error weights can be generalized to doing the same for different

restrictions on the error vectors. The mathematical richness of Reed-Solomon codes

suggests that this may be doable for other such restrictionsas well.

• The list-size upper bound in the second part of Chapter 5 has the following remark-

able property. Even though it doesnot take into account the code alphabet sizeq in its

derivation, it gives strictly and significantly tighter bounds compared to the Johnson

bound that is a function ofq (and has a much more complicated expression because of

that). That happens whenq is above some relatively small threshold. The new bound

thus proves that generalizing results from binary codes toq-ary codes in the obvious

way does not necessarily give the best results. Another difficulty in generalizing bi-

www.manaraa.com

159

nary results to higher alphabets is encountered in Conjecture 2.1 in Chapter 2, whose

settlement to the affirmative would prove optimality of thet asymmetricℓ-limited

magnitude code construction for anyℓ andt. Both examples indicate that more at-

tention and more clever techniques are needed toward improving our understanding

of q-ary coding in general.

www.manaraa.com

160

Bibliography

[AAK02] R. Ahlswede, H. Aydinian, and L.H. Khachatrian. Unidirectional er-

ror control codes and related combinatorial problems. Inproc. of the

Eighth International Workshop on Algebraic and Combinatorial Coding

Theory (ACCT-8), St. Petersburg, Russia (Extended versionavailable at:

http://arxiv.org/abs/cs/0607132), pages 6–9, 2002.

[AHU74] A. Aho, J. Hopcroft, and J. Ullman.The design and analysis of computer

algorithms. Addison-Wesley, Reading, MA USA, 1974.

[AKS04] A. Ahmed, R. Kötter, and N. Shanbhag. VLSI architectures for soft-decision

decoding of Reed-Solomon codes. InInternational Conference on Communi-

cations, pages 2584–2590. IEEE, June 2004.

[And73] B. Anderson. Finite topologies and Hamilton paths.J. Combinatorial Theory

(B), 14:87–93, 1973.

[BBBM95] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:an efficient scheme

for tolerating double disk failures in RAID architectures.IEEE Transactions

on Computers, 44(2):192–202, 1995.

[BBV96] M. Blaum, J. Bruck, and A. Vardy. MDS array codes withindependent parity

symbols.IEEE Transactions on Information Theory, 42(2):529–542, 1996.

[BFvT98] M. Blaum, P. Farrell, and H. van Tilborg. Array codes. Handbook of Coding

Theory, V.S. Pless and W.C. Huffman, pages 1855–1909, 1998.

[Bla83] R.E Blahut.Theory and Practice of Error Control Codes. Addison-Wesley,

Reading, Massachusetts, 1983.

www.manaraa.com

161

[BM85] E. Berlekamp and R. McEliece. Average-case optimized buffered decoders.

In The impact of processing techniques on communications, pages 145–158,

Martinus Nijhoff publishers, The Netherlands, 1985. NATO Advanced science

institutes.

[Bor81] J.M Borden. Bounds and constructions for error correcting/detecting codes

on the Z-channel. InProc. IEEE International Symposium on Information

Theory, pages 94–95, 1981.

[BR93] M. Blaum and R.M Roth. New array codes for multiple phased burst correc-

tion. IEEE Transactions on Information Theory, 39(1):66–77, 1993.

[BR99] M. Blaum and R.M Roth. On lowest density MDS codes.IEEE Transactions

on Information Theory, 45(1):46–59, 1999.

[BSH05] A. Bandyopadhyay, G. Serrano, and P. Hasler. Programming analog computa-

tional memory elements to 0.2% accuracy over 3.5 decades using a predictive

method. Inproc. of the IEEE International Symposium on Circuits and Sys-

tems, pages 2148–2151, 2005.

[CB04] Y. Cassuto and J. Bruck. Miscorrection probability beyond the minimum dis-

tance. InProc. of the IEEE International Symposium on Info. Theory, page

523, Chicago, Illinois, June 2004.

[CB05] Y. Cassuto and J. Bruck. On the average complexity of Reed-Solomon alge-

braic list decoders. InProc. of the 8th International Symposium on Commu-

nication Theory and Applications, pages 30–35, Ambleside, UK, July 2005.

[CB06] Y. Cassuto and J. Bruck. Cyclic low density MDS array codes. InProc. of the

IEEE International Symposium on Info. Theory, pages 2794–2798, Seattle,

Washington, July 2006.

[CB07] Y. Cassuto and J. Bruck. Cyclic lowest density MDS array codes. IEEE

Transactions on Information Theory, submitted, August 2007.

www.manaraa.com

162

[CEG+04] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and

S. Sankar. Row-diagonal parity for double disk failure correction. InIn Pro-

ceedings of the 3rd USENIX Conference on File and Storage Technologies,

San-Francisco CA, 2004.

[Che92] K.M Cheung. On the decoder error probability of block codes.IEEE-Trans-

Comm, 40(5):857–859, May 1992.

[CLO97] D. Cox, J. Little, and D. O’Shea.Ideals, Varieties, and Algorithms. Springer,

New York NY, 1997.

[CSBB07] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck. Codes for multi-level

Flash memories: correcting asymmetric limited-magnitudeerrors. InProc. of

the IEEE International Symposium on Info. Theory, pages 1176–1180, Nice,

France, June 2007.

[Eli57] P. Elias. List decoding for noisy channels. Technical report, Technical report,

Research Laboratory of Electronics, MIT, 1957.

[Eli91] P. Elias. Error-correcting codes for list decoding. IEEE Transactions on In-

formation Theory, 37(1):5–12, 1991.

[ER99] B. Eitan and A. Roy. Binary and multilevel Flash cells. Flash Memories, P.

Cappelletti, C. Golla, P. Olivo, E. Zanoni Eds. Kluwer, pages 91–152, 1999.

[GCKT03] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error correcting

techniques for new-generation Flash memories.Proceedings of the IEEE,

91(4):602–616, 2003.

[Gib92] G. Gibson.Redundant Disk Arrays. MIT Press, Cambridge MA, USA, 1992.

[GKKG06] W. Gross, F. Kschischang, R. Kötter, and P. Gulak.Applications of al-

gebraic soft-decision decoding of reed-solomon codes.IEEE-Trans-Comm,

54(7):1224–1234, 2006.

www.manaraa.com

163

[GRS00] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with

queries: The highly noisy case.SIAM J. Discrete Math, 13(4):535–570,

November 2000.

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and

algebraic-geometric codes. IEEE Transactions on Information Theory,

45:1755–1764, 1999.

[GS01] V. Guruswami and M. Sudan. Extensions to the johnson bound. Manuscript,

2001.

[Gur01] V. Guruswami.List decoding of error-correcting codes. Ph. D. Dissertation,

Massachusetts Institute of Technology, 2001.

[HCL07] C. Huang, M. Chen, and J. Li. Pyramid codes: flexible schemes to trade space

for access efficiency in reliable data storage systems. InIn Proceedings of

the Sixth IEEE International Symposium on Network Computing and Applica-

tions, Cambridge, MA USA, 2007.

[HM77] Z.M Huntoon and A.M Michelson. On the computation of the probability of

post-decoding error events for block codes.IEEE Transactions on Information

Theory, 23(3):399–403, May 1977.

[HP03] W.C Huffman and V. Pless.Fundamentals of Error-Correcting Codes. Cam-

bridge university press, Cambridge, UK, 2003.

[HX05] C. Huang and L. Xu. Star: An efficient coding scheme forcorrecting triple

storage node failures. InIn Proceedings of the 4th USENIX Conference on

File and Storage Technologies, San-Francisco CA, 2005.

[KF59] W. Kim and C. Freiman. Single error-correcting codesfor asymmetric binary

channels.IRE Transactions on Information Theory, 5(2):62–66, 1959.

[Klø81] T. Kløve. Error correcting codes for the asymmetricchannel. Technical Report

18-09-07-81, Dept. Mathematics, University of Bergen, Norway, 1981.

www.manaraa.com

164

[Köt96] R. Kötter. Fast generalized minimum-distance decoding of algebraic-

geometry and Reed-Solomon codes.IEEE Transactions on Information The-

ory, 42(3):721–736, 1996.

[KV03a] R. Kötter and A. Vardy. Algbraic soft-decision decoding of Reed-Solomon

codes. IEEE Transactions on Information Theory, 49(11):2809–2825,

November 2003.

[KV03b] R. Kötter and A. Vardy. A complexity reducing transformation in algebraic

list decoding of Reed-Solomon codes. Inproc. of ITW, Paris, 2003.

[LC83] S. Lin and D. Costello.Error Control Coding: Fundamentals and Applica-

tions. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[LN86] R. Lidl and H. Niederreiter.Introduction to finite fields and their applications.

Cambridge University Press, Cambridge UK, 1986.

[LR06] E. Louidor and R.M Roth. Lowest-density MDS codes over extension alpha-

bets.IEEE Transactions on Information Theory, 52(7):3186–3197, 2006.

[McE73] R.J McEliece. Comment on ”a class of codes for asymmetric channels and a

problem from the additive theory of numbers”.IEEE Transactions on Infor-

mation Theory, 19(1):137, 1973.

[McE03a] R.J McEliece. The guruswami-sudan algorithm for decoding Reed-

Solomon codes. Technical Report IPN progress report 42-153, JPL,

http://www.ipnpr.jpl.nasa.gov/progressreport/42-153/, 2003.

[McE03b] R.J McEliece. On the average list size for the guruswami-sudan decoder. In

proc. of the International Symposium on Communication Theory and Appli-

cations, pages 2–6. IEEE, July 2003.

[MS77] F.J MacWilliams and N.J.A Sloane.The Theory of Error-Correcting Codes.

North Holland, Amsterdam, The Netherlands, 1977.

www.manaraa.com

165

[NH00] R.R Nielsen and T. Hoholdt. Decoding Reed-Solomon codes beyond half the

minimum distance.Cryptography and Related Areas, J. Buchmann et al. eds.

Springer-Verlag 2000, pages 221–236, 2000.

[PGK88] D. A. Patterson, G. A. Gibson, and R. Katz. A case for redundant arrays of

inexpensive disks. InProc. SIGMOD Int. Conf. Data Management, pages

109–116, 1988.

[PW72] W.W Peterson and E.J Weldon.Error-Correcting Codes. MIT Press, Cam-

bridge, MA, 1972.

[RR03] G. Ruckenstein and R.M Roth. Bounds on the list-decoding radius of Reed-

Solomon codes.SIAM J. Discrete Math, 17(2):171–195, November 2003.

[Sha48] C.E Shannon. A mathematical theory of communication. Bell System Techni-

cal Journal, 27(9):379–423, October 1948.

[Sha56] C.E Shannon. The zero error capacity of a noisy channel. IRE Transactions

on Information Theory, 2:S8–S19, September 1956.

[Ste84] S. Stein. Packings ofRn by certain error spheres.IEEE Transactions on

Information Theory, 30(2):356–363, March 1984.

[Sud97] M. Sudan. Decoding of Reed-Solomon codes beyond theerror correction

bound.J. Complexity, 12:180–193, 1997.

[TB97] L. Trefethen and D. Bau.Numerical linear algebra. Society for industrial and

applied mathematics, Philadelphia PA, 1997.

[TW67] R.L Townsend and E.J Weldon. Self-orthogonal quasi-cyclic codes. IEEE

Transactions on Information Theory, 13(2):183–195, 1967.

[Var73] R. Varshamov. A class of codes for asymmetric channels and a problem from

the additive theory of numbers.IEEE Transactions on Information Theory,

19(1):92–95, 1973.

www.manaraa.com

166

[Web92] J. Weber. Necessary and sufficient conditions on block codes correct-

ing/detecting errors of various types.IEEE Transactions on Computers,

41(9):1189–1193, 1992.

[Wol06] J.K Wolf. An introduction to tensor product codes and applications to digital

storage systems. InProc. IEEE Information Theory Workshop, pages 6–10,

Chengdu, China, 2006.

[Woz58] J.M Wozencraft. List decoding. Technical Report 48, Quarterly progress

report, Research Laboratory of Electronics, MIT, 1958.

[XB99] L. Xu and J. Bruck. X-code: MDS array codes with optimal encoding.IEEE

Transactions on Information Theory, 45(1):272–276, 1999.

[XBBW99] L. Xu, V. Bohossian, J. Bruck, and D.G Wagner. Low-density MDS codes

and factors of complete graphs.IEEE Transactions on Information Theory,

45(6):1817–1826, 1999.

[ZZS81] G.V Zaitsev, V.A Zinov’ev, and N.V Semakov. Minimum-check-density codes

for correcting bytes of errors, erasures, or defects.Problems Inform. Transm.,

19:197–204, 1981.

